# Testing one file gradio app for zero gpu spaces not working as expected. # Check here for the issue: import gc import json import random from typing import List, Optional import spaces import gradio as gr from huggingface_hub import ModelCard import torch import numpy as np from pydantic import BaseModel from PIL import Image from diffusers import ( FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline, StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline, AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting, DiffusionPipeline, AutoencoderKL, FluxControlNetModel, FluxMultiControlNetModel, ControlNetModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from huggingface_hub import hf_hub_download from transformers import CLIPFeatureExtractor from photomaker import FaceAnalysis2 from diffusers.schedulers import * from huggingface_hub import hf_hub_download from safetensors.torch import load_file from controlnet_aux.processor import Processor from photomaker import ( PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline, analyze_faces ) from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl, get_weighted_text_embeddings_flux1 # Initialize System def load_sd(): # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = "cuda" if torch.cuda.is_available() else "cpu" # Models models = [ { "repo_id": "black-forest-labs/FLUX.1-dev", "loader": "flux", "compute_type": torch.bfloat16, }, { "repo_id": "SG161222/RealVisXL_V4.0", "loader": "xl", "compute_type": torch.float16, } ] for model in models: try: model["pipeline"] = AutoPipelineForText2Image.from_pretrained( model['repo_id'], torch_dtype = model['compute_type'], safety_checker = None, variant = "fp16" ).to(device) model["pipeline"].enable_model_cpu_offload() except: model["pipeline"] = AutoPipelineForText2Image.from_pretrained( model['repo_id'], torch_dtype = model['compute_type'], safety_checker = None ).to(device) model["pipeline"].enable_model_cpu_offload() # VAE n Refiner sdxl_vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device) refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=sdxl_vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device) refiner.enable_model_cpu_offload() # Safety Checker safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device) feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) # Controlnets controlnet_models = [ { "repo_id": "xinsir/controlnet-depth-sdxl-1.0", "name": "depth_xl", "layers": ["depth"], "loader": "xl", "compute_type": torch.float16, }, { "repo_id": "xinsir/controlnet-canny-sdxl-1.0", "name": "canny_xl", "layers": ["canny"], "loader": "xl", "compute_type": torch.float16, }, { "repo_id": "xinsir/controlnet-openpose-sdxl-1.0", "name": "openpose_xl", "layers": ["pose"], "loader": "xl", "compute_type": torch.float16, }, { "repo_id": "xinsir/controlnet-scribble-sdxl-1.0", "name": "scribble_xl", "layers": ["scribble"], "loader": "xl", "compute_type": torch.float16, }, { "repo_id": "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "name": "flux1_union_pro", "layers": ["canny_fl", "tile_fl", "depth_fl", "blur_fl", "pose_fl", "gray_fl", "low_quality_fl"], "loader": "flux-multi", "compute_type": torch.bfloat16, } ] for controlnet in controlnet_models: if controlnet["loader"] == "xl": controlnet["controlnet"] = ControlNetModel.from_pretrained( controlnet["repo_id"], torch_dtype = controlnet['compute_type'] ).to(device) elif controlnet["loader"] == "flux-multi": controlnet["controlnet"] = FluxMultiControlNetModel([FluxControlNetModel.from_pretrained( controlnet["repo_id"], torch_dtype = controlnet['compute_type'] ).to(device)]) #TODO: Add support for flux only controlnet # Face Detection (for PhotoMaker) face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition']) face_detector.prepare(ctx_id=0, det_size=(640, 640)) # PhotoMaker V2 (for SDXL only) photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model") return device, models, sdxl_vae, refiner, safety_checker, feature_extractor, controlnet_models, face_detector, photomaker_ckpt device, models, sdxl_vae, refiner, safety_checker, feature_extractor, controlnet_models, face_detector, photomaker_ckpt = load_sd() # Models class ControlNetReq(BaseModel): controlnets: List[str] # ["canny", "tile", "depth"] control_images: List[Image.Image] controlnet_conditioning_scale: List[float] class Config: arbitrary_types_allowed=True class SDReq(BaseModel): model: str = "" prompt: str = "" negative_prompt: Optional[str] = "black-forest-labs/FLUX.1-dev" fast_generation: Optional[bool] = True loras: Optional[list] = [] embeddings: Optional[list] = [] resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill scheduler: Optional[str] = "euler_fl" height: int = 1024 width: int = 1024 num_images_per_prompt: int = 1 num_inference_steps: int = 8 guidance_scale: float = 3.5 seed: Optional[int] = 0 refiner: bool = False vae: bool = True controlnet_config: Optional[ControlNetReq] = None photomaker_images: Optional[List[Image.Image]] = None class Config: arbitrary_types_allowed=True class SDImg2ImgReq(SDReq): image: Image.Image strength: float = 1.0 class Config: arbitrary_types_allowed=True class SDInpaintReq(SDImg2ImgReq): mask_image: Image.Image class Config: arbitrary_types_allowed=True # Helper functions def get_controlnet(controlnet_config: ControlNetReq): control_mode = [] controlnet = [] for m in controlnet_models: for c in controlnet_config.controlnets: if c in m["layers"]: control_mode.append(m["layers"].index(c)) controlnet.append(m["controlnet"]) return controlnet, control_mode def get_pipe(request: SDReq | SDImg2ImgReq | SDInpaintReq): for m in models: if m["repo_id"] == request.model: pipeline = m['pipeline'] controlnet, control_mode = get_controlnet(request.controlnet_config) if request.controlnet_config else (None, None) pipe_args = { "pipeline": pipeline, "control_mode": control_mode, } if request.controlnet_config: pipe_args["controlnet"] = controlnet if not request.photomaker_images: if isinstance(request, SDReq): pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args) elif isinstance(request, SDImg2ImgReq): pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args) elif isinstance(request, SDInpaintReq): pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args) else: raise ValueError(f"Unknown request type: {type(request)}") elif isinstance(request, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])): if request.controlnet_config: pipe_args['pipeline'] = PhotoMakerStableDiffusionXLControlNetPipeline.from_pipe(**pipe_args) else: pipe_args['pipeline'] = PhotoMakerStableDiffusionXLPipeline.from_pipe(**pipe_args) else: raise ValueError(f"Invalid request type: {type(request)}") return pipe_args def load_scheduler(pipeline, scheduler): schedulers = { "dpmpp_2m": (DPMSolverMultistepScheduler, {}), "dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}), "dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++"}), "dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "use_karras_sigmas": True}), "dpmpp_sde": (DPMSolverSinglestepScheduler, {}), "dpmpp_sde_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}), "dpm2": (KDPM2DiscreteScheduler, {}), "dpm2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}), "dpm2_a": (KDPM2AncestralDiscreteScheduler, {}), "dpm2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}), "euler": (EulerDiscreteScheduler, {}), "euler_a": (EulerAncestralDiscreteScheduler, {}), "heun": (HeunDiscreteScheduler, {}), "lms": (LMSDiscreteScheduler, {}), "lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}), "deis": (DEISMultistepScheduler, {}), "unipc": (UniPCMultistepScheduler, {}), "fm_euler": (FlowMatchEulerDiscreteScheduler, {}), } scheduler_class, kwargs = schedulers.get(scheduler, (None, {})) if scheduler_class is not None: scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs) else: raise ValueError(f"Unknown scheduler: {scheduler}") return scheduler def load_loras(pipeline, loras, fast_generation): for i, lora in enumerate(loras): pipeline.load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}") adapter_names = [f"lora_{i}" for i in range(len(loras))] adapter_weights = [lora['weight'] for lora in loras] if fast_generation: hyper_lora = hf_hub_download( "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors" if isinstance(pipeline, FluxPipeline) else "Hyper-SDXL-2steps-lora.safetensors" ) hyper_weight = 0.125 if isinstance(pipeline, FluxPipeline) else 1.0 pipeline.load_lora_weights(hyper_lora, adapter_name="hyper_lora") adapter_names.append("hyper_lora") adapter_weights.append(hyper_weight) pipeline.set_adapters(adapter_names, adapter_weights) def load_xl_embeddings(pipeline, embeddings): for embedding in embeddings: state_dict = load_file(hf_hub_download(embedding['repo_id'])) pipeline.load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) pipeline.load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str): for image in images: if resize_mode == "resize_only": image = image.resize((width, height)) elif resize_mode == "crop_and_resize": image = image.crop((0, 0, width, height)) elif resize_mode == "resize_and_fill": image = image.resize((width, height), Image.Resampling.LANCZOS) return images def get_controlnet_images(controlnets: List[str], control_images: List[Image.Image], height: int, width: int, resize_mode: str): response_images = [] control_images = resize_images(control_images, height, width, resize_mode) for controlnet, image in zip(controlnets, control_images): if controlnet == "canny" or controlnet == "canny_xs" or controlnet == "canny_fl": processor = Processor('canny') elif controlnet == "depth" or controlnet == "depth_xs" or controlnet == "depth_fl": processor = Processor('depth_midas') elif controlnet == "pose" or controlnet == "pose_fl": processor = Processor('openpose_full') elif controlnet == "scribble": processor = Processor('scribble') else: raise ValueError(f"Invalid Controlnet: {controlnet}") response_images.append(processor(image, to_pil=True)) return response_images def check_image_safety(images: List[Image.Image]): safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda") has_nsfw_concepts = safety_checker( images=[images], clip_input=safety_checker_input.pixel_values.to("cuda"), ) return has_nsfw_concepts[1] def get_prompt_attention(pipeline, prompt, negative_prompt): if isinstance(pipeline, (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)): prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt) return prompt_embeds, None, pooled_prompt_embeds, None elif isinstance(pipeline, StableDiffusionXLPipeline): prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt) return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds else: raise ValueError(f"Invalid pipeline type: {type(pipeline)}") def get_photomaker_images(photomaker_images: List[Image.Image], height: int, width: int, resize_mode: str): image_input_ids = [] image_id_embeds = [] photomaker_images = resize_images(photomaker_images, height, width, resize_mode) for image in photomaker_images: image_input_ids.append(img) img = np.array(image)[:, :, ::-1] faces = analyze_faces(face_detector, image) if len(faces) > 0: image_id_embeds.append(torch.from_numpy(faces[0]['embeddings'])) else: raise ValueError("No face detected in the image") return image_input_ids, image_id_embeds def cleanup(pipeline, loras = None, embeddings = None): if loras: pipeline.disable_lora() pipeline.unload_lora_weights() if embeddings: pipeline.unload_textual_inversion() gc.collect() torch.cuda.empty_cache() # Gen function def gen_img( request: SDReq | SDImg2ImgReq | SDInpaintReq ): pipeline_args = get_pipe(request) pipeline = pipeline_args['pipeline'] try: pipeline.scheduler = load_scheduler(pipeline, request.scheduler) load_loras(pipeline, request.loras, request.fast_generation) load_xl_embeddings(pipeline, request.embeddings) control_images = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode) if request.controlnet_config else None photomaker_images, photomaker_id_embeds = get_photomaker_images(request.photomaker_images, request.height, request.width) if request.photomaker_images else (None, None) positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_prompt_attention(pipeline, request.prompt, request.negative_prompt) # Common args args = { 'prompt_embeds': positive_prompt_embeds, 'pooled_prompt_embeds': positive_prompt_pooled, 'height': request.height, 'width': request.width, 'num_images_per_prompt': request.num_images_per_prompt, 'num_inference_steps': request.num_inference_steps, 'guidance_scale': request.guidance_scale, 'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)], } if isinstance(pipeline, any([StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline])): args['clip_skip'] = request.clip_skip args['negative_prompt_embeds'] = negative_prompt_embeds args['negative_pooled_prompt_embeds'] = negative_prompt_pooled if isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config: args['control_mode'] = pipeline_args['control_mode'] args['control_image'] = control_images args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale if not isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config: args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale if isinstance(request, SDReq): args['image'] = control_images elif isinstance(request, (SDImg2ImgReq, SDInpaintReq)): args['control_image'] = control_images if request.photomaker_images and isinstance(pipeline, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])): args['input_id_images'] = photomaker_images args['input_id_embeds'] = photomaker_id_embeds args['start_merge_step'] = 10 if isinstance(request, SDImg2ImgReq): args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode) args['strength'] = request.strength elif isinstance(request, SDInpaintReq): args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode) args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode) args['strength'] = request.strength images = pipeline(**args).images if request.refiner: images = refiner( prompt=request.prompt, num_inference_steps=40, denoising_start=0.7, image=images.images ).images cleanup(pipeline, request.loras, request.embeddings) return images except Exception as e: cleanup(pipeline, request.loras, request.embeddings) raise ValueError(f"Error generating image: {e}") from e # CSS css = """ @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600&display=swap'); body { font-family: 'Poppins', sans-serif !important; } .center-content { text-align: center; max-width: 600px; margin: 0 auto; padding: 20px; } .center-content h1 { font-weight: 600; margin-bottom: 1rem; } .center-content p { margin-bottom: 1.5rem; } """ flux_models = ["black-forest-labs/FLUX.1-dev"] with open("data/images/loras/flux.json", "r") as f: loras = json.load(f) # Main Gradio app with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: # Header with gr.Column(elem_classes="center-content"): gr.Markdown(""" # ๐Ÿš€ AAI: All AI Unleash your creativity with our multi-modal AI platform. [![Sync code to HF Space](https://github.com/mantrakp04/aai/actions/workflows/hf-space.yml/badge.svg)](https://github.com/mantrakp04/aai/actions/workflows/hf-space.yml) """) # Tabs with gr.Tabs(): with gr.Tab(label="๐Ÿ–ผ๏ธ Image"): with gr.Tabs(): with gr.Tab("Flux"): """ Create the image tab for Generative Image Generation Models Args: models: list A list containing the models repository paths gap_iol, gap_la, gap_le, gap_eio, gap_io: Optional[List[dict]] A list of dictionaries containing the title and component for the custom gradio component Example: def gr_comp(): gr.Label("Hello World") [ { 'title': "Title", 'component': gr_comp() } ] loras: list A list of dictionaries containing the image and title for the Loras Gallery Generally a loaded json file from the data folder """ def process_gaps(gaps: List[dict]): for gap in gaps: with gr.Accordion(gap['title']): gap['component'] with gr.Row(): with gr.Column(): with gr.Group() as image_options: model = gr.Dropdown(label="Models", choices=flux_models, value=flux_models[0], interactive=True) prompt = gr.Textbox(lines=5, label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt") fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) ๐Ÿงช") with gr.Accordion("Loras", open=True): # Lora Gallery lora_gallery = gr.Gallery( label="Gallery", value=[(lora['image'], lora['title']) for lora in loras], allow_preview=False, columns=[3], type="pil" ) with gr.Group(): with gr.Column(): with gr.Row(): custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path") selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA") custom_lora_info = gr.HTML(visible=False) add_lora = gr.Button(value="Add LoRA") enabled_loras = gr.State(value=[]) with gr.Group(): with gr.Row(): for i in range(6): # only support max 6 loras due to inference time with gr.Column(): with gr.Column(scale=2): globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True) with gr.Column(): globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False) with gr.Accordion("Embeddings", open=False): # Embeddings gr.Label("To be implemented") with gr.Accordion("Image Options"): # Image Options with gr.Tabs(): image_options = { "img2img": "Upload Image", "inpaint": "Upload Image", "canny": "Upload Image", "pose": "Upload Image", "depth": "Upload Image", } for image_option, label in image_options.items(): with gr.Tab(image_option): if not image_option in ['inpaint', 'scribble']: globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil") elif image_option in ['inpaint', 'scribble']: globals()[f"{image_option}_image"] = gr.ImageEditor( label=label, image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(), interactive=True, type="pil", ) # Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint) globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True) resize_mode = gr.Radio( label="Resize Mode", choices=["crop and resize", "resize only", "resize and fill"], value="resize and fill", interactive=True ) with gr.Column(): with gr.Group(): output_images = gr.Gallery( label="Output Images", value=[], allow_preview=True, type="pil", interactive=False, ) generate_images = gr.Button(value="Generate Images", variant="primary") with gr.Accordion("Advance Settings", open=True): with gr.Row(): scheduler = gr.Dropdown( label="Scheduler", choices = [ "fm_euler" ], value="fm_euler", interactive=True ) with gr.Row(): for column in range(2): with gr.Column(): options = [ ("Height", "image_height", 64, 1024, 64, 1024, True), ("Width", "image_width", 64, 1024, 64, 1024, True), ("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True), ("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True), ("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False), ("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True), ("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True), ] for label, var_name, min_val, max_val, step, value, visible in options[column::2]: globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True) with gr.Row(): refiner = gr.Checkbox( label="Refiner ๐Ÿงช", value=False, ) vae = gr.Checkbox( label="VAE", value=True, ) # Events # Base Options fast_generation.change(update_fast_generation, [model, fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore # Lora Gallery lora_gallery.select(selected_lora_from_gallery, None, selected_lora) custom_lora.change(update_selected_lora, custom_lora, [custom_lora, selected_lora]) add_lora.click(add_to_enabled_loras, [model, selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras]) enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore for i in range(6): globals()[f"lora_remove_{i}"].click( lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index), [enabled_loras], [enabled_loras] ) # Generate Image generate_images.click( generate_image, # type: ignore [ model, prompt, negative_prompt, fast_generation, enabled_loras, lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore resize_mode, scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore refiner, vae ], [output_images] ) with gr.Tab("SDXL"): gr.Label("To be implemented") with gr.Tab(label="๐ŸŽต Audio"): gr.Label("Coming soon!") with gr.Tab(label="๐ŸŽฌ Video"): gr.Label("Coming soon!") with gr.Tab(label="๐Ÿ“„ Text"): gr.Label("Coming soon!") demo.launch( share=False, debug=True, )