from newspaper import Article from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws") import nltk nltk.download('punkt') from nltk.tokenize import sent_tokenize def my_paraphrase(sentence): sentence = "paraphrase: " + sentence + " " encoding = tokenizer.encode_plus(sentence,padding=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"] outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=1) output = tokenizer.decode(outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) return(output) def text(url): article = Article(url) article.download() article.parse() input_text = article.text output = " ".join([my_paraphrase(sent) for sent in sent_tokenize(input_text)]) return output import gradio as gr def summarize(url): outputtext = text(url) return outputtext gr.Interface(fn=summarize, inputs=gr.inputs.Textbox(lines=7, placeholder="Enter text here"), outputs=[gr.outputs.Textbox(label="Paraphrased Text")],examples=[["developed by python team" ]]).launch(inline=False)