Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client, handle_file | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import os | |
import pandas as pd | |
from io import StringIO | |
# Define your Hugging Face token (make sure to set it as an environment variable) | |
HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable | |
# Initialize the Gradio Client for the specified API | |
client = Client("mangoesai/Elections_Comparison_Agent_V4", hf_token=HF_TOKEN) | |
# client_name = ['2016 Election','2024 Election', 'Comparison two years'] | |
def stream_chat_with_rag( | |
message: str, | |
# history: list, | |
client_name: str | |
): | |
# print(f"Message: {message}") | |
#answer = client.predict(question=question, api_name="/run_graph") | |
answer, fig = client.predict( | |
query= message, | |
election_year=client_name, | |
api_name="/process_query" | |
) | |
# Debugging: Print the raw response | |
print("Raw answer from API:") | |
print(answer) | |
print("top works from API:") | |
print(fig) | |
# return answer, fig | |
return answer | |
def heatmap(top_n): | |
# df = pd.read_csv('submission_emotiontopics2024GPTresult.csv') | |
# topics_df = gr.Dataframe(value=df, label="Data Input") | |
pivot_table = client.predict( | |
top_n= top_n, | |
api_name="/get_heatmap_pivot_table" | |
) | |
print(pivot_table) | |
print(type(pivot_table)) | |
""" | |
pivot_table is a dict like: | |
{'headers': ['Index', 'economy', 'human rights', 'immigrant', 'politics'], | |
'data': [['anger', 55880.0, 557679.0, 147766.0, 180094.0], | |
['disgust', 26911.0, 123112.0, 64567.0, 46460.0], | |
['fear', 51466.0, 188898.0, 113174.0, 150578.0], | |
['neutral', 77005.0, 192945.0, 20549.0, 190793.0]], | |
'metadata': None} | |
""" | |
# transfere dictionary to df | |
df = pd.DataFrame(pivot_table['data'], columns=pivot_table['headers']) | |
df.set_index('Index', inplace=True) | |
plt.figure(figsize=(10, 8)) | |
sns.heatmap(df, | |
cmap='YlOrRd', | |
cbar_kws={'label': 'Weighted Frequency'}, | |
square=True) | |
plt.title(f'Top {top_n} Emotions vs Topics Weighted Frequency') | |
plt.xlabel('Topics') | |
plt.ylabel('Emotions') | |
plt.xticks(rotation=45, ha='right') | |
plt.tight_layout() | |
return plt.gcf() | |
# Create Gradio interface | |
with gr.Blocks(title="Reddit Election Analysis") as demo: | |
gr.Markdown("# Reddit Public sentiment & Social topic distribution ") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
top_n = gr.Dropdown(choices=[1,2,3,4,5,6,7,8,9,10]) | |
with gr.Row(): | |
fresh_btn = gr.Button("Refresh Heatmap") | |
with gr.Column(): | |
output_heatmap = gr.Plot( | |
label="Top Public sentiment & Social topic Heatmap", | |
container=True, # Ensures the plot is contained within its area | |
elem_classes="heatmap-plot" # Add a custom class for styling | |
) | |
gr.Markdown("# Reddit Election Posts/Comments Analysis") | |
gr.Markdown("Ask questions about election-related comments and posts") | |
with gr.Row(): | |
with gr.Column(): | |
year_selector = gr.Radio( | |
choices=["2016 Election", "2024 Election", "Comparison two years"], | |
label="Select Election Year", | |
value="2016 Election" | |
) | |
query_input = gr.Textbox( | |
label="Your Question", | |
placeholder="Ask about election comments or posts..." | |
) | |
submit_btn = gr.Button("Submit") | |
gr.Markdown(""" | |
## Example Questions: | |
- Is there any comments don't like the election results | |
- Summarize the main discussions about voting process | |
- What are the common opinions about candidates? | |
""") | |
with gr.Column(): | |
output_text = gr.Textbox( | |
label="Response", | |
lines=20 | |
) | |
with gr.Row(): | |
output_plot = gr.Plot( | |
label="Topic Distribution", | |
container=True, # Ensures the plot is contained within its area | |
elem_classes="topic-plot" # Add a custom class for styling | |
) | |
# Add custom CSS to ensure proper plot sizing | |
gr.HTML(""" | |
<style> | |
.topic-plot { | |
min-height: 600px; | |
width: 100%; | |
margin: auto; | |
} | |
.heatmap-plot { | |
min-height: 400px; | |
width: 100%; | |
margin: auto; | |
} | |
</style> | |
""") | |
fresh_btn.click( | |
fn=heatmap, | |
inputs=top_n, | |
outputs=output_heatmap | |
) | |
# Update both outputs when submit is clicked | |
# submit_btn.click( | |
# fn=stream_chat_with_rag, | |
# inputs=[query_input, year_selector], | |
# outputs=[output_text, output_plot] | |
# ) | |
submit_btn.click( | |
fn=stream_chat_with_rag, | |
inputs=[query_input, year_selector], | |
outputs=output_text | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |