demo1 / app.py
mamkkl's picture
Update app.py
1cf8fb9 verified
import gradio as gr
from huggingface_hub import InferenceClient
import transformers
from transformers import AutoTokenizer,GenerationConfig, BitsAndBytesConfig
import torch
from peft import PeftModel
import spaces
import torch
import bitsandbytes, accelerate
print(transformers.__version__) # Should be >= 4.26.0
print(bitsandbytes.__version__) # Should be >= 0.37.0
print(accelerate.__version__) # Should be >= 0.12.0
num_gpus = torch.cuda.device_count()
print(f"Number of available GPUs: {num_gpus}")
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
base_model = "Neko-Institute-of-Science/LLaMA-65B-HF"
lora_weights = "./"
#lora_weights = LoraConfig(
# auto_mapping=None,
# base_model_name_or_path="Neko-Institute-of-Science/LLaMA-65B-HF",
# bias=None,
# fan_in_fan_out=False,
# inference_mode=True,
# init_lora_weights=True,
# layers_pattern=None,
# layers_to_transform=None,
# lora_alpha=16,
# lora_dropout=0.05,
# modules_to_save=None,
# peft_type="LORA",
# revision=None,
# target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"],
# task_type="CAUSAL_LM",
#)
cache_dir = "/data"
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with further context. "
"Write a response that appropriately completes the request.\n\n"
"Instruction:\n{instruction}\n\n Input:\n{input}\n\n Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"Instruction:\n{instruction}\n\nResponse:"
),
}
model = None
tokenizer = None
quantization_config = BitsAndBytesConfig(
load_in_8bit=True, # Enable 8-bit quantization
llm_int8_enable_fp32_cpu_offload=True # Enable FP32 CPU offloading
)
def print_resources():
# List details for each GPU
for i in range(num_gpus):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
print(f" Total Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
print(f" CUDA Capability: {torch.cuda.get_device_properties(i).major}.{torch.cuda.get_device_properties(i).minor}")
print(f" Allocated Memory: {torch.cuda.memory_allocated(i) / 1e9:.2f} GB")
print(f" Cached Memory: {torch.cuda.memory_reserved(i) / 1e9:.2f} GB")
print(f" Free Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9 - torch.cuda.memory_reserved(i) / 1e9:.2f} GB")
def generate_prompt(instruction, input=None):
if input:
return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input)
else:
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
def generator(input_ids, generation_config, max_new_tokens):
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=max_new_tokens,
)
return generation_output
def loadModel():
global model, tokenizer
if model is None:
#from llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
#replace_llama_rope_with_scaled_rope()
model = transformers.AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16,
cache_dir=cache_dir,
device_map="auto",
#quantization_config=quantization_config,
max_memory={
0: "30GB", # GPU 0 with 20GB memory
1: "45GB", # GPU 0 with 20GB memory
2: "45GB", # GPU 0 with 20GB memory
3: "45GB", # GPU 0 with 20GB memory
#"cpu": "5GB" # CPU with 100GB memory
},
)
print_resources()
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map="auto",
cache_dir='',
torch_dtype=torch.float16,
is_trainable=False,
max_memory={
0: "30GB", # GPU 0 with 20GB memory
1: "45GB", # GPU 0 with 20GB memory
2: "45GB", # GPU 0 with 20GB memory
3: "45GB", # GPU 0 with 20GB memory
#"cpu": "5GB" # CPU with 100GB memory
},
)
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir)
tokenizer.pad_token = tokenizer.unk_token
print_resources()
return model, tokenizer
model, tokenizer = loadModel()
#@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
ins_f = generate_prompt(message,None)
inputs = tokenizer(ins_f, return_tensors="pt")
print_resources()
input_ids = inputs["input_ids"].cuda()
max_new_tokens = 512
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.75,
top_k=40,
do_sample=True,
num_beams=1,
max_new_tokens = max_new_tokens
)
#generation_output = generator(input_ids, generation_config, max_new_tokens)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
response = output.split("Response:")[1].strip()
yield response
#messages = [{"role": "system", "content": system_message}]
#for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
#response = ""
#for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
#):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()