|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import transformers |
|
from transformers import AutoTokenizer,GenerationConfig, BitsAndBytesConfig |
|
import torch |
|
from peft import PeftModel |
|
import spaces |
|
import torch |
|
import bitsandbytes, accelerate |
|
|
|
print(transformers.__version__) |
|
print(bitsandbytes.__version__) |
|
print(accelerate.__version__) |
|
|
|
num_gpus = torch.cuda.device_count() |
|
print(f"Number of available GPUs: {num_gpus}") |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
base_model = "Neko-Institute-of-Science/LLaMA-65B-HF" |
|
lora_weights = "./" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache_dir = "/data" |
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"Below is an instruction that describes a task, paired with further context. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"Instruction:\n{instruction}\n\n Input:\n{input}\n\n Response:" |
|
), |
|
"prompt_no_input": ( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"Instruction:\n{instruction}\n\nResponse:" |
|
), |
|
} |
|
model = None |
|
tokenizer = None |
|
|
|
quantization_config = BitsAndBytesConfig( |
|
load_in_8bit=True, |
|
llm_int8_enable_fp32_cpu_offload=True |
|
) |
|
|
|
def print_resources(): |
|
|
|
for i in range(num_gpus): |
|
print(f"GPU {i}: {torch.cuda.get_device_name(i)}") |
|
print(f" Total Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB") |
|
print(f" CUDA Capability: {torch.cuda.get_device_properties(i).major}.{torch.cuda.get_device_properties(i).minor}") |
|
print(f" Allocated Memory: {torch.cuda.memory_allocated(i) / 1e9:.2f} GB") |
|
print(f" Cached Memory: {torch.cuda.memory_reserved(i) / 1e9:.2f} GB") |
|
print(f" Free Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9 - torch.cuda.memory_reserved(i) / 1e9:.2f} GB") |
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input) |
|
else: |
|
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction) |
|
|
|
def generator(input_ids, generation_config, max_new_tokens): |
|
|
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
return generation_output |
|
|
|
def loadModel(): |
|
global model, tokenizer |
|
if model is None: |
|
|
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
torch_dtype=torch.float16, |
|
cache_dir=cache_dir, |
|
device_map="auto", |
|
|
|
max_memory={ |
|
0: "30GB", |
|
1: "45GB", |
|
2: "45GB", |
|
3: "45GB", |
|
|
|
}, |
|
) |
|
print_resources() |
|
model = PeftModel.from_pretrained( |
|
model, |
|
lora_weights, |
|
device_map="auto", |
|
cache_dir='', |
|
torch_dtype=torch.float16, |
|
is_trainable=False, |
|
max_memory={ |
|
0: "30GB", |
|
1: "45GB", |
|
2: "45GB", |
|
3: "45GB", |
|
|
|
}, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir) |
|
tokenizer.pad_token = tokenizer.unk_token |
|
print_resources() |
|
return model, tokenizer |
|
|
|
model, tokenizer = loadModel() |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
ins_f = generate_prompt(message,None) |
|
inputs = tokenizer(ins_f, return_tensors="pt") |
|
print_resources() |
|
input_ids = inputs["input_ids"].cuda() |
|
max_new_tokens = 512 |
|
generation_config = GenerationConfig( |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
do_sample=True, |
|
num_beams=1, |
|
max_new_tokens = max_new_tokens |
|
) |
|
|
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
response = output.split("Response:")[1].strip() |
|
yield response |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
if __name__ == "__main__": |
|
demo.launch() |
|
|