import gradio as gr import torch import numpy as np import modin.pandas as pd from PIL import Image from diffusers import DiffusionPipeline from huggingface_hub import login import os login(token=os.environ.get('HF_KEY')) device = "cuda" if torch.cuda.is_available() else "cpu" torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe = pipe.to(device) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.enable_xformers_memory_efficient_attention() torch.cuda.empty_cache() refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) refiner = refiner.to(device) refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) refiner.enable_xformers_memory_efficient_attention() torch.cuda.empty_cache() def genie (prompt, negative_prompt, scale, steps, seed): torch.cuda.empty_cache() generator = torch.Generator(device=device).manual_seed(seed) int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator, width=768, height=768, output_type="latent").images torch.cuda.empty_cache() image = refiner(prompt=prompt, image=int_image).images[0] return image gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), gr.Textbox(label='What you Do Not want the AI to generate.'), gr.Slider(1, 15, 10), gr.Slider(25, maximum=50, value=25, step=1), gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True)], outputs='image', title="Stable Diffusion XL .9 CPU", description="SDXL .9 CPU. WARNING: Extremely Slow. 65s/Iteration. Expect 25-50mins an image for 25-50 iterations respectively.", article = "Code Monkey: Manjushri").launch(debug=True, max_threads=80)