Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import hashlib | |
import json | |
import os | |
import time | |
from threading import Thread | |
import logging | |
import gradio as gr | |
import torch | |
from tinychart.model.builder import load_pretrained_model | |
from tinychart.mm_utils import ( | |
KeywordsStoppingCriteria, | |
load_image_from_base64, | |
process_images, | |
tokenizer_image_token, | |
get_model_name_from_path, | |
) | |
from PIL import Image | |
from io import BytesIO | |
import base64 | |
import torch | |
from transformers import StoppingCriteria | |
from tinychart.constants import ( | |
DEFAULT_IM_END_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IMAGE_TOKEN, | |
IMAGE_TOKEN_INDEX, | |
) | |
from tinychart.conversation import SeparatorStyle, conv_templates, default_conversation | |
from tinychart.eval.eval_metric import parse_model_output, evaluate_cmds | |
from transformers import TextIteratorStreamer | |
from pathlib import Path | |
import spaces | |
DEFAULT_MODEL_PATH = "mPLUG/TinyChart-3B-768" | |
DEFAULT_MODEL_NAME = "TinyChart-3B-768" | |
block_css = """ | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
""" | |
title_markdown = """ | |
# TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning | |
π [[Code](https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart)] | π [[Paper](https://arxiv.org/abs/2404.16635)] | |
**Note:** | |
1. Currently, this demo only supports English chart understanding and may not work well with other languages. | |
2. To use Program-of-Thoughts answer, please append "Answer with detailed steps." to your question. | |
""" | |
tos_markdown = """ | |
### Terms of use | |
By using this service, users are required to agree to the following terms: | |
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. | |
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
""" | |
def regenerate(state, image_process_mode): | |
state.messages[-1][-1] = None | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) | |
def clear_history(): | |
state = default_conversation.copy() | |
return (state, state.to_gradio_chatbot(), "", None) | |
def add_text(state, text, image, image_process_mode): | |
if len(text) <= 0 and image is None: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), "", None) | |
text = text[:1536] # Hard cut-off | |
if image is not None: | |
text = text[:1200] # Hard cut-off for images | |
if "<image>" not in text: | |
# text = '<Image><image></Image>' + text | |
# text = text + "\n<image>" | |
text = "<image>\n"+text | |
text = (text, image, image_process_mode) | |
if len(state.get_images(return_pil=True)) > 0: | |
state = default_conversation.copy() | |
state.append_message(state.roles[0], text) | |
state.append_message(state.roles[1], None) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) | |
def load_demo(): | |
state = default_conversation.copy() | |
return state | |
def is_float(value): | |
try: | |
float(value) | |
return True | |
except ValueError: | |
return False | |
def get_response(params): | |
prompt = params["prompt"] | |
ori_prompt = prompt | |
images = params.get("images", None) | |
num_image_tokens = 0 | |
if images is not None and len(images) > 0: | |
if len(images) > 0: | |
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
raise ValueError( | |
"Number of images does not match number of <image> tokens in prompt" | |
) | |
images = [load_image_from_base64(image) for image in images] | |
images = process_images(images, image_processor, model.config) | |
if type(images) is list: | |
images = [ | |
image.to(model.device, dtype=torch.float32) for image in images | |
] | |
else: | |
images = images.to(model.device, dtype=torch.float32) | |
replace_token = DEFAULT_IMAGE_TOKEN | |
if getattr(model.config, "mm_use_im_start_end", False): | |
replace_token = ( | |
DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
) | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
if hasattr(model.get_vision_tower().config, "tome_r"): | |
num_image_tokens = ( | |
prompt.count(replace_token) * model.get_vision_tower().num_patches - 26 * model.get_vision_tower().config.tome_r | |
) | |
else: | |
num_image_tokens = ( | |
prompt.count(replace_token) * model.get_vision_tower().num_patches | |
) | |
else: | |
images = None | |
image_args = {"images": images} | |
else: | |
images = None | |
image_args = {} | |
temperature = float(params.get("temperature", 1.0)) | |
top_p = float(params.get("top_p", 1.0)) | |
max_context_length = getattr(model.config, "max_position_embeddings", 2048) | |
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
stop_str = params.get("stop", None) | |
do_sample = True if temperature > 0.001 else False | |
logger.info(prompt) | |
input_ids = ( | |
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
.unsqueeze(0) | |
.to(model.device) | |
) | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
streamer = TextIteratorStreamer( | |
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=1500 | |
) | |
max_new_tokens = min( | |
max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens | |
) | |
if max_new_tokens < 1: | |
yield json.dumps( | |
{ | |
"text": ori_prompt | |
+ "Exceeds max token length. Please start a new conversation, thanks.", | |
"error_code": 0, | |
} | |
).encode() + b"\0" | |
return | |
# local inference | |
# BUG: If stopping_criteria is set, an error occur: | |
# RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 0 | |
generate_kwargs = dict( | |
inputs=input_ids, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
streamer=streamer, | |
# stopping_criteria=[stopping_criteria], | |
use_cache=True, | |
**image_args, | |
) | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
logger.debug(ori_prompt) | |
logger.debug(generate_kwargs) | |
generated_text = ori_prompt | |
for new_text in streamer: | |
generated_text += new_text | |
if generated_text.endswith(stop_str): | |
generated_text = generated_text[: -len(stop_str)] | |
yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
if '<step>' in generated_text and '</step>' in generated_text and '<comment>' in generated_text and '</comment>' in generated_text: | |
program = generated_text | |
program = '<comment>#' + program.split('ASSISTANT: <comment>#')[-1] | |
print(program) | |
try: | |
execuate_result = evaluate_cmds(parse_model_output(program)) | |
if is_float(execuate_result): | |
execuate_result = round(float(execuate_result), 4) | |
generated_text += f'\n\nExecute result: {execuate_result}' | |
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" | |
except: | |
# execuate_result = 'Failed.' | |
generated_text += f'\n\nIt seems the execution of the above code encounters bugs. I\'m trying to answer this question directly...' | |
ori_generated_text = generated_text + '\nDirect Answer: ' | |
direct_prompt = ori_prompt.replace(' Answer with detailed steps.', '') | |
direct_input_ids = ( | |
tokenizer_image_token(direct_prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
.unsqueeze(0) | |
.to(model.device) | |
) | |
generate_kwargs = dict( | |
inputs=direct_input_ids, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
streamer=streamer, | |
use_cache=True, | |
**image_args, | |
) | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
generated_text = ori_generated_text | |
for new_text in streamer: | |
generated_text += new_text | |
if generated_text.endswith(stop_str): | |
generated_text = generated_text[: -len(stop_str)] | |
yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
def http_bot(state, temperature, top_p, max_new_tokens): | |
if state.skip_next: | |
# This generate call is skipped due to invalid inputs | |
yield (state, state.to_gradio_chatbot()) | |
return | |
if len(state.messages) == state.offset + 2: | |
# First round of conversation | |
template_name = 'phi' | |
new_state = conv_templates[template_name].copy() | |
new_state.append_message(new_state.roles[0], state.messages[-2][1]) | |
new_state.append_message(new_state.roles[1], None) | |
state = new_state | |
# Construct prompt | |
prompt = state.get_prompt() | |
all_images = state.get_images(return_pil=True) | |
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] | |
# Make requests | |
# pload = {"model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p), | |
# "max_new_tokens": min(int(max_new_tokens), 1536), "stop": ( | |
# state.sep | |
# if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] | |
# else state.sep2 | |
# ), "images": state.get_images()} | |
pload = { | |
"model": model_name, | |
"prompt": prompt, | |
"temperature": float(temperature), | |
"top_p": float(top_p), | |
"max_new_tokens": min(int(max_new_tokens), 1536), | |
"stop": ( | |
state.sep | |
if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] | |
else state.sep2 | |
), "images": state.get_images()} | |
state.messages[-1][-1] = "β" | |
yield (state, state.to_gradio_chatbot()) | |
# for stream | |
output = get_response(pload) | |
for chunk in output: | |
if chunk: | |
data = json.loads(chunk.decode().replace('\x00','')) | |
if data["error_code"] == 0: | |
output = data["text"][len(prompt) :].strip() | |
state.messages[-1][-1] = output + "β" | |
yield (state, state.to_gradio_chatbot()) | |
else: | |
output = data["text"] + f" (error_code: {data['error_code']})" | |
state.messages[-1][-1] = output | |
yield (state, state.to_gradio_chatbot()) | |
return | |
time.sleep(0.03) | |
state.messages[-1][-1] = state.messages[-1][-1][:-1] | |
yield (state, state.to_gradio_chatbot()) | |
def build_demo(): | |
textbox = gr.Textbox( | |
show_label=False, placeholder="Enter text and press ENTER", container=False | |
) | |
with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo: | |
state = gr.State() | |
gr.Markdown(title_markdown) | |
with gr.Row(): | |
with gr.Column(scale=5): | |
with gr.Row(elem_id="Model ID"): | |
gr.Dropdown( | |
choices=[DEFAULT_MODEL_NAME], | |
value=DEFAULT_MODEL_NAME, | |
interactive=True, | |
label="Model ID", | |
container=False, | |
) | |
imagebox = gr.Image(type="pil") | |
image_process_mode = gr.Radio( | |
["Crop", "Resize", "Pad", "Default"], | |
value="Default", | |
label="Preprocess for non-square image", | |
visible=False, | |
) | |
cur_dir = Path(__file__).parent | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/images/market.png", | |
"What is the highest number of companies in the domestic market? Answer with detailed steps.", | |
], | |
[ | |
f"{cur_dir}/images/college.png", | |
"What is the difference between Asians and Whites degree distribution? Answer with detailed steps." | |
], | |
[ | |
f"{cur_dir}/images/immigrants.png", | |
"How many immigrants are there in 1931?", | |
], | |
[ | |
f"{cur_dir}/images/sails.png", | |
"By how much percentage wholesale is less than retail? Answer with detailed steps." | |
], | |
[ | |
f"{cur_dir}/images/diseases.png", | |
"Is the median value of all the bars greater than 30? Answer with detailed steps.", | |
], | |
[ | |
f"{cur_dir}/images/economy.png", | |
"Which team has higher economy in 28 min?" | |
], | |
[ | |
f"{cur_dir}/images/workers.png", | |
"Generate underlying data table for the chart." | |
], | |
[ | |
f"{cur_dir}/images/sports.png", | |
"Create a brief summarization or extract key insights based on the chart image." | |
], | |
[ | |
f"{cur_dir}/images/albums.png", | |
"Redraw the chart with Python code." | |
] | |
], | |
inputs=[imagebox, textbox], | |
) | |
with gr.Accordion("Parameters", open=False) as _: | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.1, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
interactive=True, | |
label="Top P", | |
) | |
max_output_tokens = gr.Slider( | |
minimum=0, | |
maximum=1024, | |
value=1024, | |
step=64, | |
interactive=True, | |
label="Max output tokens", | |
) | |
with gr.Column(scale=8): | |
chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox.render() | |
with gr.Column(scale=1, min_width=50): | |
submit_btn = gr.Button(value="Send", variant="primary") | |
with gr.Row(elem_id="buttons") as _: | |
regenerate_btn = gr.Button(value="π Regenerate", interactive=True) | |
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) | |
gr.Markdown(tos_markdown) | |
regenerate_btn.click( | |
regenerate, | |
[state, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False, | |
).then( | |
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
) | |
clear_btn.click( | |
clear_history, None, [state, chatbot, textbox, imagebox], queue=False | |
) | |
textbox.submit( | |
add_text, | |
[state, textbox, imagebox, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False, | |
).then( | |
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
) | |
submit_btn.click( | |
add_text, | |
[state, textbox, imagebox, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False, | |
).then( | |
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
) | |
demo.load(load_demo, None, [state], queue=False) | |
return demo | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default=None) | |
parser.add_argument("--port", type=int, default=None) | |
parser.add_argument("--share", default=None) | |
parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH) | |
parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_NAME) | |
parser.add_argument("--load-8bit", action="store_true") | |
parser.add_argument("--load-4bit", action="store_true") | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", | |
) | |
logger = logging.getLogger(__name__) | |
logger.info(gr.__version__) | |
args = parse_args() | |
model_name = args.model_name | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
model_path=args.model_path, | |
model_base=None, | |
model_name=args.model_name, | |
device="cpu", | |
load_4bit=args.load_4bit, | |
load_8bit=args.load_8bit, | |
torch_dtype=torch.float32, | |
) | |
demo = build_demo() | |
demo.queue() | |
demo.launch(server_name=args.host, server_port=args.port, share=args.share) |