File size: 7,201 Bytes
d6bc023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------

import math
from typing import Callable, Tuple

import torch


def do_nothing(x, mode=None):
    return x


def bipartite_soft_matching(
    metric: torch.Tensor,
    r: int,
    class_token: bool = False,
    distill_token: bool = False,
) -> Tuple[Callable, Callable]:
    """
    Applies ToMe with a balanced matching set (50%, 50%).

    Input size is [batch, tokens, channels].
    r indicates the number of tokens to remove (max 50% of tokens).

    Extra args:
     - class_token: Whether or not there's a class token.
     - distill_token: Whether or not there's also a distillation token.

    When enabled, the class token and distillation tokens won't get merged.
    """
    protected = 0
    if class_token:
        protected += 1
    if distill_token:
        protected += 1

    # We can only reduce by a maximum of 50% tokens
    t = metric.shape[1]
    r = min(r, (t - protected) // 2)

    if r <= 0:
        return do_nothing, do_nothing

    with torch.no_grad():
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = metric[..., ::2, :], metric[..., 1::2, :]
        scores = a @ b.transpose(-1, -2)

        if class_token:
            scores[..., 0, :] = -math.inf
        if distill_token:
            scores[..., :, 0] = -math.inf

        node_max, node_idx = scores.max(dim=-1)
        edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

        unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
        src_idx = edge_idx[..., :r, :]  # Merged Tokens
        dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx)

        if class_token:
            # Sort to ensure the class token is at the start
            unm_idx = unm_idx.sort(dim=1)[0]

    def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
        src, dst = x[..., ::2, :], x[..., 1::2, :]
        n, t1, c = src.shape
        unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c))
        src = src.gather(dim=-2, index=src_idx.expand(n, r, c))
        dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)

        if distill_token:
            return torch.cat([unm[:, :1], dst[:, :1], unm[:, 1:], dst[:, 1:]], dim=1)
        else:
            return torch.cat([unm, dst], dim=1)

    def unmerge(x: torch.Tensor) -> torch.Tensor:
        unm_len = unm_idx.shape[1]
        unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
        n, _, c = unm.shape

        src = dst.gather(dim=-2, index=dst_idx.expand(n, r, c))

        out = torch.zeros(n, metric.shape[1], c, device=x.device, dtype=x.dtype)

        out[..., 1::2, :] = dst
        out.scatter_(dim=-2, index=(2 * unm_idx).expand(n, unm_len, c), src=unm)
        out.scatter_(dim=-2, index=(2 * src_idx).expand(n, r, c), src=src)

        return out

    return merge, unmerge


def kth_bipartite_soft_matching(
    metric: torch.Tensor, k: int
) -> Tuple[Callable, Callable]:
    """
    Applies ToMe with the two sets as (every kth element, the rest).
    If n is the number of tokens, resulting number of tokens will be n // z.

    Input size is [batch, tokens, channels].
    z indicates the stride for the first set.
    z = 2 is equivalent to regular bipartite_soft_matching with r = 0.5 * N
    """
    if k <= 1:
        return do_nothing, do_nothing

    def split(x):
        t_rnd = (x.shape[1] // k) * k
        x = x[:, :t_rnd, :].view(x.shape[0], -1, k, x.shape[2])
        a, b = (
            x[:, :, : (k - 1), :].contiguous().view(x.shape[0], -1, x.shape[-1]),
            x[:, :, (k - 1), :],
        )
        return a, b

    with torch.no_grad():
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)
        r = a.shape[1]
        scores = a @ b.transpose(-1, -2)

        _, dst_idx = scores.max(dim=-1)
        dst_idx = dst_idx[..., None]

    def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
        src, dst = split(x)
        n, _, c = src.shape
        dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)

        return dst

    def unmerge(x: torch.Tensor) -> torch.Tensor:
        n, _, c = x.shape
        dst = x

        src = dst.gather(dim=-2, index=dst_idx.expand(n, r, c)).to(x.dtype)

        src = src.view(n, -1, (k - 1), c)
        dst = dst.view(n, -1, 1, c)

        out = torch.cat([src, dst], dim=-2)
        out = out.contiguous().view(n, -1, c)

        return out

    return merge, unmerge


def random_bipartite_soft_matching(
    metric: torch.Tensor, r: int
) -> Tuple[Callable, Callable]:
    """
    Applies ToMe with the two sets as (r chosen randomly, the rest).
    Input size is [batch, tokens, channels].

    This will reduce the number of tokens by r.
    """
    if r <= 0:
        return do_nothing, do_nothing

    with torch.no_grad():
        B, N, _ = metric.shape
        rand_idx = torch.rand(B, N, 1, device=metric.device).argsort(dim=1)

        a_idx = rand_idx[:, :r, :]
        b_idx = rand_idx[:, r:, :]

        def split(x):
            C = x.shape[-1]
            a = x.gather(dim=1, index=a_idx.expand(B, r, C))
            b = x.gather(dim=1, index=b_idx.expand(B, N - r, C))
            return a, b

        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)
        scores = a @ b.transpose(-1, -2)

        _, dst_idx = scores.max(dim=-1)
        dst_idx = dst_idx[..., None]

    def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
        src, dst = split(x)
        C = src.shape[-1]
        dst = dst.scatter_reduce(-2, dst_idx.expand(B, r, C), src, reduce=mode)

        return dst

    def unmerge(x: torch.Tensor) -> torch.Tensor:
        C = x.shape[-1]
        dst = x
        src = dst.gather(dim=-2, index=dst_idx.expand(B, r, C))

        out = torch.zeros(B, N, C, device=x.device, dtype=x.dtype)

        out.scatter_(dim=-2, index=a_idx.expand(B, r, C), src=src)
        out.scatter_(dim=-2, index=b_idx.expand(B, N - r, C), src=dst)

        return out

    return merge, unmerge


def merge_wavg(
    merge: Callable, x: torch.Tensor, size: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Applies the merge function by taking a weighted average based on token size.
    Returns the merged tensor and the new token sizes.
    """
    if size is None:
        size = torch.ones_like(x[..., 0, None])

    x = merge(x * size, mode="sum")
    size = merge(size, mode="sum")

    x = x / size
    return x, size


def merge_source(
    merge: Callable, x: torch.Tensor, source: torch.Tensor = None
) -> torch.Tensor:
    """
    For source tracking. Source is an adjacency matrix between the initial tokens and final merged groups.
    x is used to find out how many tokens there are in case the source is None.
    """
    if source is None:
        n, t, _ = x.shape
        source = torch.eye(t, device=x.device)[None, ...].expand(n, t, t)

    source = merge(source, mode="amax")
    return source