File size: 30,985 Bytes
9ae8d89
 
 
 
 
 
 
 
 
 
0a14325
930ed8c
9ae8d89
20dad4a
9ae8d89
 
 
09b313f
 
 
 
 
9ae8d89
09b313f
 
0a14325
0da5ee3
 
553b217
 
 
fb84311
 
d83f3a1
 
 
 
 
 
 
d8147b8
 
09b313f
9ae8d89
09b313f
 
 
9ae8d89
 
 
09b313f
9ae8d89
09b313f
9ae8d89
 
09b313f
9ae8d89
 
6c10fa6
 
 
 
 
094d4db
 
9ae8d89
 
 
 
09b313f
 
 
6616540
09b313f
 
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
09b313f
9ae8d89
09b313f
 
 
9ae8d89
 
d86ca68
34c150d
 
 
 
 
 
 
 
 
 
 
 
 
0da5ee3
 
 
d83f3a1
0da5ee3
57fd1ce
 
 
 
 
094d4db
 
0a14325
0da5ee3
0a14325
 
 
ba515db
 
 
 
 
 
 
 
 
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb84311
 
 
 
20dad4a
fb84311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
d83f3a1
 
 
4b6eb81
 
d83f3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a5d65b
 
 
 
 
 
aee59de
 
 
 
 
 
 
 
 
 
 
0a5d65b
 
9ae8d89
 
 
 
 
d8147b8
d86ca68
0da5ee3
 
553b217
 
 
fb84311
 
d83f3a1
 
 
 
 
 
 
d8147b8
 
09b313f
 
d8147b8
 
09b313f
d8147b8
 
 
 
 
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
09b313f
 
 
 
 
9ae8d89
09b313f
9ae8d89
0da5ee3
 
 
 
33739cc
0da5ee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
 
0da5ee3
34c150d
 
 
09b313f
 
0da5ee3
 
 
 
09b313f
0a14325
 
 
 
 
 
553b217
 
c92b14d
 
 
 
 
 
 
553b217
 
 
 
c92b14d
 
553b217
 
 
 
 
c92b14d
 
553b217
 
 
 
fb84311
 
 
 
 
 
 
 
 
20dad4a
d83f3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b6eb81
d83f3a1
 
 
4b6eb81
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
 
 
094d4db
 
 
 
 
 
 
 
9ae8d89
09b313f
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
094d4db
9ae8d89
 
 
09b313f
 
9ae8d89
 
 
094d4db
 
 
 
 
 
9ae8d89
09b313f
9ae8d89
 
09b313f
 
 
9ae8d89
 
 
34c150d
9ae8d89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
# changes to be made here
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns, ClosedEndedMultilingualColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn
from src.submission.check_validity import is_model_on_hub
from src.envs import PRIVATE_REPO

@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run."""

    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    dataset_results: dict
    # changes to be made here
    open_ended_results: dict
    med_safety_results: dict
    medical_summarization_results: dict
    aci_results: dict
    soap_results: dict
    healthbench_results: dict
    healthbench_hard_results: dict
    open_ended_arabic_results: dict
    open_ended_french_results: dict
    open_ended_spanish_results: dict
    open_ended_portuguese_results: dict
    open_ended_romanian_results: dict
    open_ended_greek_results: dict
    closed_ended_multilingual_results: dict
    is_domain_specific: bool
    use_chat_template: bool
    # clinical_type_results:dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    backbone:str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False
    display_result:bool = True

    @classmethod
    def init_from_json_file(self, json_filepath, evaluation_metric):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            try:
                data = json.load(fp)
            except:
                breakpoint()
            
        # if "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" in json_filepath:
        #     breakpoint()
        config = data.get("config")

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))
        model_type = ModelType.from_str(config.get("model_type", ""))
        license = config.get("license", "?")
        num_params = config.get("num_params", "?")
        num_params = -1 if num_params == "?" or num_params is None or isinstance(num_params, float) and math.isnan(num_params) else num_params
        display_result = config.get("display_result", True)
        display_result = False if display_result=="False" else True

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("revision", "main"), trust_remote_code=True, test_tokenizer=False
        )
        backbone = "?"
        if model_config is not None:
            backbones = getattr(model_config, "architectures", None)
            if backbones:
                backbone = ";".join(backbones)

        # Extract results available in this file (some results are split in several files)
        harness_results = {}
        if "closed-ended" in data["results"]:
            for task in HarnessTasks:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                try:
                    accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended"].items() if task.benchmark == k])
                except:
                    # breakpoint()
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                harness_results[task.benchmark] = mean_acc
        open_ended_results = {}
        if "open-ended" in data["results"]:
            for task in OpenEndedColumns:
                task = task.value 
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
                open_ended_results[task.benchmark] = accs
            if open_ended_results["ELO_intervals"] is not None and open_ended_results["Score_intervals"] is not None:
                open_ended_results["ELO_intervals"] = "+" + str(open_ended_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_results["ELO_intervals"][0]))
                open_ended_results["Score_intervals"] = "+" + str(open_ended_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_results["Score_intervals"][0]))
        # if "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" in json_filepath:
        #     breakpoint()
        # changes to be made here
        med_safety_results = {}
        if "med-safety" in data["results"]:
            for task in MedSafetyColumns:
                task = task.value
                if task.benchmark == "Harmfulness Score":
                    accs = data["results"]["med-safety"][task.benchmark]
                    med_safety_results[task.benchmark] = accs
                elif task.benchmark == "95% CI":
                    accs = data["results"]["med-safety"][task.benchmark]
                    med_safety_results[task.benchmark] = "+" + str(round(accs[1], 3)) + "/-" + str(round(abs(accs[0]), 3))
                else:
                    accs = data["results"]["med-safety"][task.benchmark]["score"]
                    med_safety_results[task.benchmark] = accs
        medical_summarization_results = {}
        if "medical-summarization" in data["results"]:
            for task in MedicalSummarizationColumns:
                task = task.value
                try:
                    accs = np.array([v for k, v in data["results"]["medical-summarization"]["clinical_trial"].items() if task.benchmark == k])
                except:
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                medical_summarization_results[task.benchmark] = mean_acc
        aci_results = {}
        if "note-generation" in data["results"] and "aci" in data["results"]["note-generation"]:
            for task in ACIColumns:
                task = task.value
                try:
                    accs = np.array([v for k, v in data["results"]["note-generation"]["aci"].items() if task.benchmark == k])
                except:
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                aci_results[task.benchmark] = mean_acc
        soap_results = {}
        if "note-generation" in data["results"] and "soap" in data["results"]["note-generation"]:
            for task in SOAPColumns:
                task = task.value
                try:
                    accs = np.array([v for k, v in data["results"]["note-generation"]["soap"].items() if task.benchmark == k])
                except:
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                soap_results[task.benchmark] = mean_acc
        
        healthbench_results = {}
        if "healthbench" in data["results"]:
            for task in HealthbenchColumns:
                task = task.value
                if task.benchmark == "Overall Score":
                    accs = data["results"]["healthbench"][task.benchmark]
                    healthbench_results[task.benchmark] = accs
                elif task.benchmark.startswith("Axis"):
                    accs = data["results"]["healthbench"]["Axis Scores"][task.benchmark.replace("Axis: ", "")]
                    healthbench_results[task.benchmark] = accs
                else:
                    accs = data["results"]["healthbench"]["Theme Scores"][task.benchmark]
                    healthbench_results[task.benchmark] = accs
                
        healthbench_hard_results = {}
        if "healthbench-hard" in data["results"]:
            for task in HealthbenchHardColumns:
                task = task.value
                if task.benchmark == "Overall Score":
                    accs = data["results"]["healthbench-hard"][task.benchmark]
                    healthbench_hard_results[task.benchmark] = accs
                elif task.benchmark.startswith("Axis"):
                    accs = data["results"]["healthbench-hard"]["Axis Scores"][task.benchmark.replace("Axis: ", "")]
                    healthbench_hard_results[task.benchmark] = accs
                else:
                    accs = data["results"]["healthbench-hard"]["Theme Scores"][task.benchmark]
                    healthbench_hard_results[task.benchmark] = accs

        open_ended_arabic_results = {}
        if "open-ended-arabic" in data["results"]:
            for task in OpenEndedArabicColumn:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended-arabic"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-arabic"]["overall"] else None
                open_ended_arabic_results[task.benchmark] = accs
            if open_ended_arabic_results["ELO_intervals"] is not None and open_ended_arabic_results["Score_intervals"] is not None:
                open_ended_arabic_results["ELO_intervals"] = "+" + str(open_ended_arabic_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["ELO_intervals"][0])))
                open_ended_arabic_results["Score_intervals"] = "+" + str(open_ended_arabic_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["Score_intervals"][0])))
        open_ended_french_results = {}
        if "open-ended-french" in data["results"]:
            for task in OpenEndedFrenchColumn:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended-french"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-french"]["overall"] else None
                open_ended_french_results[task.benchmark] = accs
            if open_ended_french_results["ELO_intervals"] is not None and open_ended_french_results["Score_intervals"] is not None:
                open_ended_french_results["ELO_intervals"] = "+" + str(open_ended_french_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_french_results["ELO_intervals"][0]))
                open_ended_french_results["Score_intervals"] = "+" + str(open_ended_french_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_french_results["Score_intervals"][0]))
        open_ended_spanish_results = {}
        if "open-ended-spanish" in data["results"]:
            for task in OpenEndedSpanishColumn:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended-spanish"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-spanish"]["overall"] else None
                open_ended_spanish_results[task.benchmark] = accs
            if open_ended_spanish_results["ELO_intervals"] is not None and open_ended_spanish_results["Score_intervals"] is not None:
                open_ended_spanish_results["ELO_intervals"] = "+" + str(open_ended_spanish_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["ELO_intervals"][0]))
                open_ended_spanish_results["Score_intervals"] = "+" + str(open_ended_spanish_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["Score_intervals"][0]))
        open_ended_portuguese_results = {}
        if "open-ended-portuguese" in data["results"]:
            for task in OpenEndedPortugueseColumn:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended-portuguese"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-portuguese"]["overall"] else None
                open_ended_portuguese_results[task.benchmark] = accs
            if open_ended_portuguese_results["ELO_intervals"] is not None and open_ended_portuguese_results["Score_intervals"] is not None:
                open_ended_portuguese_results["ELO_intervals"] = "+" + str(open_ended_portuguese_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["ELO_intervals"][0]))
                open_ended_portuguese_results["Score_intervals"] = "+" + str(open_ended_portuguese_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["Score_intervals"][0]))
        open_ended_romanian_results = {}
        if "open-ended-romanian" in data["results"]:
            for task in OpenEndedRomanianColumn:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended-romanian"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-romanian"]["overall"] else None
                open_ended_romanian_results[task.benchmark] = accs
            if open_ended_romanian_results["ELO_intervals"] is not None and open_ended_romanian_results["Score_intervals"] is not None:
                open_ended_romanian_results["ELO_intervals"] = "+" + str(open_ended_romanian_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["ELO_intervals"][0]))
                open_ended_romanian_results["Score_intervals"] = "+" + str(open_ended_romanian_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["Score_intervals"][0]))
        open_ended_greek_results = {}
        if "open-ended-greek" in data["results"]:
            for task in OpenEndedGreekColumn:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended-greek"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-greek"]["overall"] else None
                open_ended_greek_results[task.benchmark] = accs
            if open_ended_greek_results["ELO_intervals"] is not None and open_ended_greek_results["Score_intervals"] is not None:
                open_ended_greek_results["ELO_intervals"] = "+" + str(open_ended_greek_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["ELO_intervals"][0])))
                open_ended_greek_results["Score_intervals"] = "+" + str(open_ended_greek_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["Score_intervals"][0])))
        closed_ended_multilingual_results = {} 
        if "closed-ended-multilingual" in data["results"]:
            for task in  ClosedEndedMultilingualColumns:
                task = task.value
                accs = data["results"]["closed-ended-multilingual"][task.benchmark]["accuracy"] if task.benchmark in data["results"]["closed-ended-multilingual"] else None
                closed_ended_multilingual_results[task.benchmark] = accs
            
        #         #add the 
        # closed_ended_arabic_results = {}
        # if PRIVATE_REPO and "closed-ended-arabic" in data["results"]:
        #     for task in ClosedEndedArabicColumns:
        #         task = task.value
        #         # We average all scores of a given metric (not all metrics are present in all files)
        #         try:
        #             accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended-arabic"].items() if task.benchmark == k])
        #         except:
        #             # breakpoint()
        #             accs = np.array([])
        #         if accs.size == 0 or any([acc is None for acc in accs]):
        #             continue
        #         mean_acc = np.mean(accs)  # * 100.0
        #         closed_ended_arabic_results[task.benchmark] = mean_acc
                
                
        # if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
        #     open_ended_results = {}
        #     med_safety_results = {}
        #     medical_summarization_results = {}
        #     aci_results = {}
        #     soap_results = {}
        # types_results = {}
        # for clinical_type in ClinicalTypes:
        #     clinical_type = clinical_type.value

        #     # We average all scores of a given metric (not all metrics are present in all files)
        #     accs = np.array([v.get(clinical_type.metric, None) for k, v in data[evaluation_metric]["clinical_type_results"].items() if clinical_type.benchmark == k])
        #     if accs.size == 0 or any([acc is None for acc in accs]):
        #         continue

        #     mean_acc = np.mean(accs)  # * 100.0
        #     types_results[clinical_type.benchmark] = mean_acc
        # if "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" in json_filepath:
        #     breakpoint()
        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            revision=config.get("revision", ""),
            dataset_results=harness_results,
            open_ended_results=open_ended_results,
            med_safety_results=med_safety_results,
            medical_summarization_results=medical_summarization_results,
            aci_results=aci_results,
            soap_results=soap_results,
            healthbench_results=healthbench_results,
            healthbench_hard_results=healthbench_hard_results,
            open_ended_arabic_results=open_ended_arabic_results,
            open_ended_french_results=open_ended_french_results,
            open_ended_spanish_results=open_ended_spanish_results,
            open_ended_portuguese_results=open_ended_portuguese_results,
            open_ended_romanian_results=open_ended_romanian_results,
            open_ended_greek_results=open_ended_greek_results,
            closed_ended_multilingual_results=closed_ended_multilingual_results,
            is_domain_specific=config.get("is_domain_specific", False),  # Assuming a default value
            use_chat_template=config.get("use_chat_template", False),  # Assuming a default value
            precision=precision,
            model_type=model_type,
            weight_type=WeightType.from_str(config.get("weight_type", "")),  # Assuming the default value
            backbone=backbone,
            license=license,
            likes=config.get("likes", 0),  # Assuming a default value
            num_params=num_params,
            still_on_hub=still_on_hub,
            display_result=display_result,
            date=config.get("submitted_time","")
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
            # self.precision = request.get("precision", "float32")
        except Exception:
            pass
            # print(
            #     f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
            # )
            # print(f" Args used were - {request_file=}, {requests_path=}, {self.full_model=},")

    def to_dict(self, subset):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            # AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""),
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            # AutoEvalColumn.architecture.name: self.architecture.value.name,
            # AutoEvalColumn.backbone.name: self.backbone,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
            AutoEvalColumn.use_chat_template.name: self.use_chat_template,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.date.name: self.date,
            "display_result" : self.display_result,
        }

        if subset == "datasets":
            average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks)
            data_dict[AutoEvalColumn.average.name] = average
            if len(self.dataset_results) > 0:
                for task in HarnessTasks:
                    data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
            return data_dict
        
        if subset == "open_ended":
            if len(self.open_ended_results) > 0:
                for task in OpenEndedColumns:
                    data_dict[task.value.col_name] = self.open_ended_results[task.value.benchmark]
            return data_dict
        # changes to be made here
        if subset == "med_safety":
            if len(self.med_safety_results) > 0:
                for task in MedSafetyColumns:
                    data_dict[task.value.col_name] = self.med_safety_results[task.value.benchmark]
            return data_dict
        if subset == "medical_summarization":
            if len(self.medical_summarization_results) > 0:
                adjusted_conciseness = max(0, self.medical_summarization_results["brief"])
                coverage = self.medical_summarization_results["coverage"]
                hm = 2 / (1/coverage + 1/adjusted_conciseness) if not (adjusted_conciseness == 0 or coverage == 0) else 0
                conformity = self.medical_summarization_results["conform"]
                consistency = self.medical_summarization_results["fact"]
                overall = sum([hm, conformity, consistency]) / 3
                data_dict[AutoEvalColumn.overall.name] = overall
                for task in MedicalSummarizationColumns:
                    data_dict[task.value.col_name] = self.medical_summarization_results[task.value.benchmark]
            return data_dict
        if subset == "aci":
            overall = sum([v for v in self.aci_results.values() if v is not None]) / len(ACIColumns)
            data_dict[AutoEvalColumn.overall.name] = overall
            if len(self.aci_results) > 0:
                for task in ACIColumns:
                    data_dict[task.value.col_name] = self.aci_results[task.value.benchmark]
            return data_dict
        if subset == "soap":
            overall = sum([v for v in self.soap_results.values() if v is not None]) / len(SOAPColumns)
            data_dict[AutoEvalColumn.overall.name] = overall
            if len(self.soap_results) > 0:
                for task in SOAPColumns:
                    data_dict[task.value.col_name] = self.soap_results[task.value.benchmark]
            return data_dict
        if subset == "healthbench":
            if len(self.healthbench_results) > 0:
                for task in HealthbenchColumns:
                    data_dict[task.value.col_name] = self.healthbench_results[task.value.benchmark]
            return data_dict
        if subset == "healthbench_hard":
            if len(self.healthbench_hard_results) > 0:
                for task in HealthbenchHardColumns:
                    data_dict[task.value.col_name] = self.healthbench_hard_results[task.value.benchmark]
            return data_dict
        if subset == "open_ended_arabic":
            if len(self.open_ended_arabic_results) > 0:
                for task in OpenEndedArabicColumn:
                    data_dict[task.value.col_name] = self.open_ended_arabic_results[task.value.benchmark]
            return data_dict
        if subset == "open_ended_french":
            if len(self.open_ended_french_results) > 0:
                for task in OpenEndedFrenchColumn:
                    data_dict[task.value.col_name] = self.open_ended_french_results[task.value.benchmark]
            return data_dict
        if subset == "open_ended_spanish":
            if len(self.open_ended_spanish_results) > 0:
                for task in OpenEndedSpanishColumn:
                    data_dict[task.value.col_name] = self.open_ended_spanish_results[task.value.benchmark]
            return data_dict
        if subset == "open_ended_portuguese":
            if len(self.open_ended_portuguese_results) > 0:
                for task in OpenEndedPortugueseColumn:
                    data_dict[task.value.col_name] = self.open_ended_portuguese_results[task.value.benchmark]
            return data_dict
        if subset == "open_ended_romanian":
            if len(self.open_ended_romanian_results) > 0:
                for task in OpenEndedRomanianColumn:
                    data_dict[task.value.col_name] = self.open_ended_romanian_results[task.value.benchmark]
            return data_dict
        if subset == "open_ended_greek":
            if len(self.open_ended_greek_results) > 0:
                for task in OpenEndedGreekColumn:
                    data_dict[task.value.col_name] = self.open_ended_greek_results[task.value.benchmark]
            return data_dict
        if subset == "closed_ended_multilingual":
            average = sum([v for v in self.closed_ended_multilingual_results.values() if v is not None]) / len(ClosedEndedMultilingualColumns)
            data_dict[AutoEvalColumn.average.name] = average
            if len(self.closed_ended_multilingual_results) > 0:
                for task in ClosedEndedMultilingualColumns:
                    data_dict[task.value.col_name] = self.closed_ended_multilingual_results[task.value.benchmark]
            return data_dict

def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
                request_file = tmp_request_file
    return request_file

def update_results(result1, result2):
    # breakpoint()
    for key in dir(result1):
        if key.endswith("_results"):
            if getattr(result1, key) == {}:
                setattr(result1, key, getattr(result2, key))
    # breakpoint()
    return result1

def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metric: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))
    # breakpoint()
    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath, evaluation_metric)
        # eval_result.update_with_request_file(requests_path)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name] = update_results(eval_results[eval_name], eval_result)
            # eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result
    # breakpoint()
    results = []
    # clinical_type_results = []
    for v in eval_results.values():
        try:
            v.to_dict(subset="dataset")  # we test if the dict version is complete
            if not v.display_result:
                continue
            results.append(v)
        except KeyError:  # not all eval values present
            continue
    # breakpoint()
    return results