import os import gradio as gr from transformers import ReactCodeAgent, HfEngine, Tool from gradio import ChatMessage from gradio.utils import stream_from_transformers_agent from dotenv import load_dotenv from huggingface_hub import login from transformers.agents.default_tools import ( BASE_PYTHON_TOOLS, LIST_SAFE_MODULES, evaluate_python_code, ) # to load SerpAPI key load_dotenv() login(os.getenv("HUGGINGFACEHUB_API_KEY")) llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct") authorized_imports = ["numpy"] agent = ReactCodeAgent( llm_engine=llm_engine, tools=[], additional_authorized_imports=authorized_imports, max_iterations=10, ) class FinalAnswerToolWithVerification(Tool): name = "final_answer" description = "Provides a final answer to the given problem" inputs = { "answer": {"type": "text", "description": "The final answer to the problem"} } output_type = "any" def forward(self, answer): if "def test" not in answer: raise Exception( "I can only accept from you a code snippet answer that defines test functions in python, anything else will not work. PLEASE PROVIDE ME A FULL CODE SNIPPET CONTAINING THE DEFINITION OF THE TESTS." ) return answer final_answer_tool = FinalAnswerToolWithVerification() agent._toolbox.update_tool(final_answer_tool) function = """import numpy as np def moving_average(x, w): return np.convolve(x, np.ones(w), 'valid') / w""" task = """I will give you a basic function that I've created. Now I want you to generate a set of unit tests for these functions, check that they run, and give them to me. Please follow these steps in order: 1. Define and run the function given o you, so that it gets defined in your interpreter. 2. Generate one test function as a python blob, with assert statements 3. Run the test function in a code snippet and make sure the tests pass 4. Return to me the complete TEST function (not the original function) as a string code snippet. --- Example: Here is your function: ```py def get_even_numbers(numbers): even_numbers = [] for number in numbers: if number % 2 == 0: even_numbers.append(number) return even_numbers ``` Now generate test functions for me! Thought: Let's re-define the given function and generate a test. Code: ```py def get_even_numbers(numbers): even_numbers = [] for number in numbers: if number % 2 == 0: even_numbers.append(number) return even_numbers def test_get_even_numbers(): assert get_even_numbers([1, 2, 3, 4, 5]) == [2, 4] print("No error found!") test_get_even_numbers() ``` Observation: "No error found!" Thought: the interpreter ran tests with no error. So we can return the function IN A TEXT SNIPPET. Code: ```py fianl_answer_snippet = \"\"\" def test_get_even_numbers(): assert get_even_numbers([1, 2, 3, 4, 5]) == [2, 4] print("No error found!") \"\"\" final_answer(final_answer_snippet) ``` --- Now proceed! Here is your function: ```py <> ``` Now generate test functions for me! """ def interact_with_agent(prompt): full_prompt = task.replace("<>", prompt) messages = [] messages.append(ChatMessage(role="user", content=full_prompt)) yield messages for msg in stream_from_transformers_agent(agent, full_prompt): messages.append(msg) yield messages yield messages with gr.Blocks(theme="soft") as demo: gr.Markdown("""### Python test generator Write your function in the left textbox, and the agent on the right will generate tests for you!""") with gr.Row(): with gr.Column(): text_input = gr.Textbox( lines=1, label="Your function to test", value=function ) submit = gr.Button("Generate tests!") with gr.Column(): chatbot = gr.Chatbot(label="Agent") submit.click(interact_with_agent, [text_input], [chatbot]) if __name__ == "__main__": demo.launch()