import torch from torch import nn import torch.nn.functional as F from .lpips import LPIPS from einops import rearrange from .discriminator import NLayerDiscriminator, weights_init, NLayerDiscriminator3D def hinge_d_loss(logits_real, logits_fake): loss_real = torch.mean(F.relu(1.0 - logits_real)) loss_fake = torch.mean(F.relu(1.0 + logits_fake)) d_loss = 0.5 * (loss_real + loss_fake) return d_loss def vanilla_d_loss(logits_real, logits_fake): d_loss = 0.5 * ( torch.mean(torch.nn.functional.softplus(-logits_real)) + torch.mean(torch.nn.functional.softplus(logits_fake)) ) return d_loss def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3]) loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3]) loss_real = (weights * loss_real).sum() / weights.sum() loss_fake = (weights * loss_fake).sum() / weights.sum() d_loss = 0.5 * (loss_real + loss_fake) return d_loss def adopt_weight(weight, global_step, threshold=0, value=0.0): if global_step < threshold: weight = value return weight def measure_perplexity(predicted_indices, n_embed): # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) avg_probs = encodings.mean(0) perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() cluster_use = torch.sum(avg_probs > 0) return perplexity, cluster_use def l1(x, y): return torch.abs(x - y) def l2(x, y): return torch.pow((x - y), 2) class LPIPSWithDiscriminator(nn.Module): def __init__( self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, perceptual_weight=1.0, # --- Discriminator Loss --- disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge", ): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator( input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm ).apply(weights_init) self.discriminator_iter_start = disc_start self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad( nll_loss, self.last_layer[0], retain_graph=True )[0] g_grads = torch.autograd.grad( g_loss, self.last_layer[0], retain_graph=True )[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward( self, inputs, reconstructions, posteriors, optimizer_idx, global_step, split="train", weights=None, last_layer=None, cond=None, ): inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() reconstructions = rearrange( reconstructions, "b c t h w -> (b t) c h w" ).contiguous() rec_loss = torch.abs(inputs - reconstructions) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs, reconstructions) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights * nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] # GAN Part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator( torch.cat((reconstructions.contiguous(), cond), dim=1) ) g_loss = -torch.mean(logits_fake) if self.disc_factor > 0.0: try: d_weight = self.calculate_adaptive_weight( nll_loss, g_loss, last_layer=last_layer ) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) else: d_weight = torch.tensor(0.0) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start ) loss = ( weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss ) log = { "{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator( torch.cat((inputs.contiguous().detach(), cond), dim=1) ) logits_fake = self.discriminator( torch.cat((reconstructions.contiguous().detach(), cond), dim=1) ) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start ) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = { "{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean(), } return d_loss, log class LPIPSWithDiscriminator3D(nn.Module): def __init__( self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, perceptual_weight=1.0, # --- Discriminator Loss --- disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge", ): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator3D( input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm ).apply(weights_init) self.discriminator_iter_start = disc_start self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad( nll_loss, self.last_layer[0], retain_graph=True )[0] g_grads = torch.autograd.grad( g_loss, self.last_layer[0], retain_graph=True )[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward( self, inputs, reconstructions, posteriors, optimizer_idx, global_step, split="train", weights=None, last_layer=None, cond=None, ): t = inputs.shape[2] inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() reconstructions = rearrange( reconstructions, "b c t h w -> (b t) c h w" ).contiguous() rec_loss = torch.abs(inputs - reconstructions) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs, reconstructions) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights * nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] inputs = rearrange(inputs, "(b t) c h w -> b c t h w", t=t).contiguous() reconstructions = rearrange( reconstructions, "(b t) c h w -> b c t h w", t=t ).contiguous() # GAN Part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions) else: assert self.disc_conditional logits_fake = self.discriminator( torch.cat((reconstructions, cond), dim=1) ) g_loss = -torch.mean(logits_fake) if self.disc_factor > 0.0: try: d_weight = self.calculate_adaptive_weight( nll_loss, g_loss, last_layer=last_layer ) except RuntimeError as e: assert not self.training, print(e) d_weight = torch.tensor(0.0) else: d_weight = torch.tensor(0.0) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start ) loss = ( weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss ) log = { "{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator( torch.cat((inputs.contiguous().detach(), cond), dim=1) ) logits_fake = self.discriminator( torch.cat((reconstructions.contiguous().detach(), cond), dim=1) ) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start ) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = { "{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean(), } return d_loss, log class SimpleLPIPS(nn.Module): def __init__( self, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, perceptual_weight=1.0, disc_loss="hinge", ): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) def forward( self, inputs, reconstructions, posteriors, split="train", weights=None, ): inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() reconstructions = rearrange( reconstructions, "b c t h w -> (b t) c h w" ).contiguous() rec_loss = torch.abs(inputs - reconstructions) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs, reconstructions) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights * nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] loss = weighted_nll_loss + self.kl_weight * kl_loss log = { "{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), } if self.perceptual_weight > 0: log.update({"{}/p_loss".format(split): p_loss.detach().mean()}) return loss, log