from ..modeling_videobase import VideoBaseAE import torch from torch import nn, Tensor import numpy as np import torch.distributed as dist import torch.nn.functional as F import math import os import json from typing import Tuple, Dict, Union from .configuration_vqvae import VQVAEConfiguration # Copied from https://github.com/wilson1yan/VideoGPT def view_range(x, i, j, shape): shape = tuple(shape) n_dims = len(x.shape) if i < 0: i = n_dims + i if j is None: j = n_dims elif j < 0: j = n_dims + j assert 0 <= i < j <= n_dims x_shape = x.shape target_shape = x_shape[:i] + shape + x_shape[j:] return x.view(target_shape) # Copied from https://github.com/wilson1yan/VideoGPT def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): n_dims = len(x.shape) if src_dim < 0: src_dim = n_dims + src_dim if dest_dim < 0: dest_dim = n_dims + dest_dim assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims dims = list(range(n_dims)) del dims[src_dim] permutation = [] ctr = 0 for i in range(n_dims): if i == dest_dim: permutation.append(src_dim) else: permutation.append(dims[ctr]) ctr += 1 x = x.permute(permutation) if make_contiguous: x = x.contiguous() return x # Copied from https://github.com/wilson1yan/VideoGPT def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0.0, training=True): # Performs scaled dot-product attention over the second to last dimension dn # (b, n_head, d1, ..., dn, d) attn = torch.matmul(q, k.transpose(-1, -2)) attn = attn / np.sqrt(q.shape[-1]) if mask is not None: attn = attn.masked_fill(mask == 0, float("-inf")) attn_float = F.softmax(attn, dim=-1) attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d attn = F.dropout(attn, p=attn_dropout, training=training) a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d return a # Copied from https://github.com/wilson1yan/VideoGPT class AxialBlock(nn.Module): def __init__(self, n_hiddens, n_head): super().__init__() kwargs = dict( shape=(0,) * 3, dim_q=n_hiddens, dim_kv=n_hiddens, n_head=n_head, n_layer=1, causal=False, attn_type="axial", ) self.attn_w = MultiHeadAttention(attn_kwargs=dict(axial_dim=-2), **kwargs) self.attn_h = MultiHeadAttention(attn_kwargs=dict(axial_dim=-3), **kwargs) self.attn_t = MultiHeadAttention(attn_kwargs=dict(axial_dim=-4), **kwargs) def forward(self, x): x = shift_dim(x, 1, -1) x = self.attn_w(x, x, x) + self.attn_h(x, x, x) + self.attn_t(x, x, x) x = shift_dim(x, -1, 1) return x # Copied from https://github.com/wilson1yan/VideoGPT class AttentionResidualBlock(nn.Module): def __init__(self, n_hiddens): super().__init__() self.block = nn.Sequential( nn.BatchNorm3d(n_hiddens), nn.ReLU(), SamePadConv3d(n_hiddens, n_hiddens // 2, 3, bias=False), nn.BatchNorm3d(n_hiddens // 2), nn.ReLU(), SamePadConv3d(n_hiddens // 2, n_hiddens, 1, bias=False), nn.BatchNorm3d(n_hiddens), nn.ReLU(), AxialBlock(n_hiddens, 2), ) def forward(self, x): return x + self.block(x) # Copied from https://github.com/wilson1yan/VideoGPT class Codebook(nn.Module): def __init__(self, n_codes, embedding_dim): super().__init__() self.register_buffer("embeddings", torch.randn(n_codes, embedding_dim)) self.register_buffer("N", torch.zeros(n_codes)) self.register_buffer("z_avg", self.embeddings.data.clone()) self.n_codes = n_codes self.embedding_dim = embedding_dim self._need_init = True def _tile(self, x): d, ew = x.shape if d < self.n_codes: n_repeats = (self.n_codes + d - 1) // d std = 0.01 / np.sqrt(ew) x = x.repeat(n_repeats, 1) x = x + torch.randn_like(x) * std return x def _init_embeddings(self, z): # z: [b, c, t, h, w] self._need_init = False flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) y = self._tile(flat_inputs) d = y.shape[0] _k_rand = y[torch.randperm(y.shape[0])][: self.n_codes] if dist.is_initialized(): dist.broadcast(_k_rand, 0) self.embeddings.data.copy_(_k_rand) self.z_avg.data.copy_(_k_rand) self.N.data.copy_(torch.ones(self.n_codes)) def forward(self, z): # z: [b, c, t, h, w] if self._need_init and self.training: self._init_embeddings(z) flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) distances = ( (flat_inputs**2).sum(dim=1, keepdim=True) - 2 * flat_inputs @ self.embeddings.t() + (self.embeddings.t() ** 2).sum(dim=0, keepdim=True) ) encoding_indices = torch.argmin(distances, dim=1) encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(flat_inputs) encoding_indices = encoding_indices.view(z.shape[0], *z.shape[2:]) embeddings = F.embedding(encoding_indices, self.embeddings) embeddings = shift_dim(embeddings, -1, 1) commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach()) # EMA codebook update if self.training: n_total = encode_onehot.sum(dim=0) encode_sum = flat_inputs.t() @ encode_onehot if dist.is_initialized(): dist.all_reduce(n_total) dist.all_reduce(encode_sum) self.N.data.mul_(0.99).add_(n_total, alpha=0.01) self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01) n = self.N.sum() weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n encode_normalized = self.z_avg / weights.unsqueeze(1) self.embeddings.data.copy_(encode_normalized) y = self._tile(flat_inputs) _k_rand = y[torch.randperm(y.shape[0])][: self.n_codes] if dist.is_initialized(): dist.broadcast(_k_rand, 0) usage = (self.N.view(self.n_codes, 1) >= 1).float() self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage)) embeddings_st = (embeddings - z).detach() + z avg_probs = torch.mean(encode_onehot, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) return dict( embeddings=embeddings_st, encodings=encoding_indices, commitment_loss=commitment_loss, perplexity=perplexity, ) def dictionary_lookup(self, encodings): embeddings = F.embedding(encodings, self.embeddings) return embeddings # Copied from https://github.com/wilson1yan/VideoGPT class Encoder(nn.Module): def __init__(self, n_hiddens, n_res_layers, downsample): super().__init__() n_times_downsample = np.array([int(math.log2(d)) for d in downsample]) self.convs = nn.ModuleList() max_ds = n_times_downsample.max() for i in range(max_ds): in_channels = 3 if i == 0 else n_hiddens stride = tuple([2 if d > 0 else 1 for d in n_times_downsample]) conv = SamePadConv3d(in_channels, n_hiddens, 4, stride=stride) self.convs.append(conv) n_times_downsample -= 1 self.conv_last = SamePadConv3d(in_channels, n_hiddens, kernel_size=3) self.res_stack = nn.Sequential( *[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)], nn.BatchNorm3d(n_hiddens), nn.ReLU(), ) def forward(self, x): h = x for conv in self.convs: h = F.relu(conv(h)) h = self.conv_last(h) h = self.res_stack(h) return h # Copied from https://github.com/wilson1yan/VideoGPT class MultiHeadAttention(nn.Module): def __init__( self, shape, dim_q, dim_kv, n_head, n_layer, causal, attn_type, attn_kwargs ): super().__init__() self.causal = causal self.shape = shape self.d_k = dim_q // n_head self.d_v = dim_kv // n_head self.n_head = n_head self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q)) self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer)) if attn_type == "full": self.attn = FullAttention(shape, causal, **attn_kwargs) elif attn_type == "axial": assert not causal, "causal axial attention is not supported" self.attn = AxialAttention(len(shape), **attn_kwargs) elif attn_type == "sparse": self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs) self.cache = None def forward(self, q, k, v, decode_step=None, decode_idx=None): """Compute multi-head attention Args q, k, v: a [b, d1, ..., dn, c] tensor or a [b, 1, ..., 1, c] tensor if decode_step is not None Returns The output after performing attention """ # compute k, q, v d_k, d_v, n_head = self.d_k, self.d_v, self.n_head q = view_range(self.w_qs(q), -1, None, (n_head, d_k)) k = view_range(self.w_ks(k), -1, None, (n_head, d_k)) v = view_range(self.w_vs(v), -1, None, (n_head, d_v)) # b x n_head x seq_len x d # (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d) q = shift_dim(q, -2, 1) k = shift_dim(k, -2, 1) v = shift_dim(v, -2, 1) # fast decoding if decode_step is not None: if decode_step == 0: if self.causal: k_shape = (q.shape[0], n_head, *self.shape, self.d_k) v_shape = (q.shape[0], n_head, *self.shape, self.d_v) self.cache = dict( k=torch.zeros(k_shape, dtype=k.dtype, device=q.device), v=torch.zeros(v_shape, dtype=v.dtype, device=q.device), ) else: # cache only once in the non-causal case self.cache = dict(k=k.clone(), v=v.clone()) if self.causal: idx = ( slice(None, None), slice(None, None), *[slice(i, i + 1) for i in decode_idx], ) self.cache["k"][idx] = k self.cache["v"][idx] = v k, v = self.cache["k"], self.cache["v"] a = self.attn(q, k, v, decode_step, decode_idx) # (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d) a = shift_dim(a, 1, -2).flatten(start_dim=-2) a = self.fc(a) # (b x seq_len x embd_dim) return a # Copied from https://github.com/wilson1yan/VideoGPT class Decoder(nn.Module): def __init__(self, n_hiddens, n_res_layers, upsample): super().__init__() self.res_stack = nn.Sequential( *[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)], nn.BatchNorm3d(n_hiddens), nn.ReLU(), ) n_times_upsample = np.array([int(math.log2(d)) for d in upsample]) max_us = n_times_upsample.max() self.convts = nn.ModuleList() for i in range(max_us): out_channels = 3 if i == max_us - 1 else n_hiddens us = tuple([2 if d > 0 else 1 for d in n_times_upsample]) convt = SamePadConvTranspose3d(n_hiddens, out_channels, 4, stride=us) self.convts.append(convt) n_times_upsample -= 1 def forward(self, x): h = self.res_stack(x) for i, convt in enumerate(self.convts): h = convt(h) if i < len(self.convts) - 1: h = F.relu(h) return h # Copied from https://github.com/wilson1yan/VideoGPT class SamePadConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 # assumes that the input shape is divisible by stride total_pad = tuple([k - s for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: # reverse since F.pad starts from last dim pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.conv = nn.Conv3d( in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias ) def forward(self, x): return self.conv(F.pad(x, self.pad_input)) # Copied from https://github.com/wilson1yan/VideoGPT class SamePadConvTranspose3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([k - s for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: # reverse since F.pad starts from last dim pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.convt = nn.ConvTranspose3d( in_channels, out_channels, kernel_size, stride=stride, bias=bias, padding=tuple([k - 1 for k in kernel_size]), ) def forward(self, x): return self.convt(F.pad(x, self.pad_input)) # Copied from https://github.com/wilson1yan/VideoGPT class FullAttention(nn.Module): def __init__(self, shape, causal, attn_dropout): super().__init__() self.causal = causal self.attn_dropout = attn_dropout seq_len = np.prod(shape) if self.causal: self.register_buffer("mask", torch.tril(torch.ones(seq_len, seq_len))) def forward(self, q, k, v, decode_step, decode_idx): mask = self.mask if self.causal else None if decode_step is not None and mask is not None: mask = mask[[decode_step]] old_shape = q.shape[2:-1] q = q.flatten(start_dim=2, end_dim=-2) k = k.flatten(start_dim=2, end_dim=-2) v = v.flatten(start_dim=2, end_dim=-2) out = scaled_dot_product_attention( q, k, v, mask=mask, attn_dropout=self.attn_dropout, training=self.training ) return view_range(out, 2, 3, old_shape) # Copied from https://github.com/wilson1yan/VideoGPT class AxialAttention(nn.Module): def __init__(self, n_dim, axial_dim): super().__init__() if axial_dim < 0: axial_dim = 2 + n_dim + 1 + axial_dim else: axial_dim += 2 # account for batch, head, dim self.axial_dim = axial_dim def forward(self, q, k, v, decode_step, decode_idx): q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3) k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3) v = shift_dim(v, self.axial_dim, -2) old_shape = list(v.shape) v = v.flatten(end_dim=-3) out = scaled_dot_product_attention(q, k, v, training=self.training) out = out.view(*old_shape) out = shift_dim(out, -2, self.axial_dim) return out # Copied from https://github.com/wilson1yan/VideoGPT class StridedSparsityConfig(object): """ Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that generalizes to arbitrary dimensions """ def __init__(self, shape, n_head, causal, block, num_local_blocks): self.n_head = n_head self.shape = shape self.causal = causal self.block = block self.num_local_blocks = num_local_blocks assert self.num_local_blocks >= 1, "Must have at least 1 local block" assert self.seq_len % self.block == 0, "seq len must be divisible by block size" self._block_shape = self._compute_block_shape() self._block_shape_cum = self._block_shape_cum_sizes() @property def seq_len(self): return np.prod(self.shape) @property def num_blocks(self): return self.seq_len // self.block def set_local_layout(self, layout): num_blocks = self.num_blocks for row in range(0, num_blocks): end = min(row + self.num_local_blocks, num_blocks) for col in range( max(0, row - self.num_local_blocks), (row + 1 if self.causal else end) ): layout[:, row, col] = 1 return layout def set_global_layout(self, layout): num_blocks = self.num_blocks n_dim = len(self._block_shape) for row in range(num_blocks): assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row cur_idx = self._to_unflattened_idx(row) # no strided attention over last dim for d in range(n_dim - 1): end = self._block_shape[d] for i in range(0, (cur_idx[d] + 1 if self.causal else end)): new_idx = list(cur_idx) new_idx[d] = i new_idx = tuple(new_idx) col = self._to_flattened_idx(new_idx) layout[:, row, col] = 1 return layout def make_layout(self): layout = torch.zeros( (self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64 ) layout = self.set_local_layout(layout) layout = self.set_global_layout(layout) return layout def make_sparse_attn_mask(self): block_layout = self.make_layout() assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks num_dense_blocks = block_layout.sum().item() attn_mask = torch.ones(num_dense_blocks, self.block, self.block) counter = 0 for h in range(self.n_head): for i in range(self.num_blocks): for j in range(self.num_blocks): elem = block_layout[h, i, j].item() if elem == 1: assert i >= j if i == j: # need to mask within block on diagonals attn_mask[counter] = torch.tril(attn_mask[counter]) counter += 1 assert counter == num_dense_blocks return attn_mask.unsqueeze(0) def get_non_block_layout_row(self, block_layout, row): block_row = row // self.block block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks block_row = block_row.repeat_interleave(self.block, dim=-1) block_row[:, :, row + 1 :] = 0.0 return block_row ############# Helper functions ########################## def _compute_block_shape(self): n_dim = len(self.shape) cum_prod = 1 for i in range(n_dim - 1, -1, -1): cum_prod *= self.shape[i] if cum_prod > self.block: break assert cum_prod % self.block == 0 new_shape = (*self.shape[:i], cum_prod // self.block) assert np.prod(new_shape) == np.prod(self.shape) // self.block return new_shape def _block_shape_cum_sizes(self): bs = np.flip(np.array(self._block_shape)) return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,) def _to_flattened_idx(self, idx): assert len(idx) == len( self._block_shape ), f"{len(idx)} != {len(self._block_shape)}" flat_idx = 0 for i in range(len(self._block_shape)): flat_idx += idx[i] * self._block_shape_cum[i] return flat_idx def _to_unflattened_idx(self, flat_idx): assert flat_idx < np.prod(self._block_shape) idx = [] for i in range(len(self._block_shape)): idx.append(flat_idx // self._block_shape_cum[i]) flat_idx %= self._block_shape_cum[i] return tuple(idx) # Copied from https://github.com/wilson1yan/VideoGPT class SparseAttention(nn.Module): ops = dict() attn_mask = dict() block_layout = dict() def __init__( self, shape, n_head, causal, num_local_blocks=4, block=32, attn_dropout=0.0 ): # does not use attn_dropout super().__init__() self.causal = causal self.shape = shape self.sparsity_config = StridedSparsityConfig( shape=shape, n_head=n_head, causal=causal, block=block, num_local_blocks=num_local_blocks, ) if self.shape not in SparseAttention.block_layout: SparseAttention.block_layout[self.shape] = ( self.sparsity_config.make_layout() ) if causal and self.shape not in SparseAttention.attn_mask: SparseAttention.attn_mask[self.shape] = ( self.sparsity_config.make_sparse_attn_mask() ) def get_ops(self): try: from deepspeed.ops.sparse_attention import MatMul, Softmax except: raise Exception( "Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`" ) if self.shape not in SparseAttention.ops: sparsity_layout = self.sparsity_config.make_layout() sparse_dot_sdd_nt = MatMul( sparsity_layout, self.sparsity_config.block, "sdd", trans_a=False, trans_b=True, ) sparse_dot_dsd_nn = MatMul( sparsity_layout, self.sparsity_config.block, "dsd", trans_a=False, trans_b=False, ) sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block) SparseAttention.ops[self.shape] = ( sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax, ) return SparseAttention.ops[self.shape] def forward(self, q, k, v, decode_step, decode_idx): if self.training and self.shape not in SparseAttention.ops: self.get_ops() SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[ self.shape ].to(q) if self.causal: SparseAttention.attn_mask[self.shape] = ( SparseAttention.attn_mask[self.shape].to(q).type_as(q) ) attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None old_shape = q.shape[2:-1] q = q.flatten(start_dim=2, end_dim=-2) k = k.flatten(start_dim=2, end_dim=-2) v = v.flatten(start_dim=2, end_dim=-2) if decode_step is not None: mask = self.sparsity_config.get_non_block_layout_row( SparseAttention.block_layout[self.shape], decode_step ) out = scaled_dot_product_attention( q, k, v, mask=mask, training=self.training ) else: if q.shape != k.shape or k.shape != v.shape: raise Exception("SparseAttention only support self-attention") sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops() scaling = float(q.shape[-1]) ** -0.5 attn_output_weights = sparse_dot_sdd_nt(q, k) if attn_mask is not None: attn_output_weights = attn_output_weights.masked_fill( attn_mask == 0, float("-inf") ) attn_output_weights = sparse_softmax(attn_output_weights, scale=scaling) out = sparse_dot_dsd_nn(attn_output_weights, v) return view_range(out, 2, 3, old_shape) # Modified from https://github.com/wilson1yan/VideoGPT class VQVAEModel(VideoBaseAE): DOWNLOADED_VQVAE = { "bair_stride4x2x2": "1iIAYJ2Qqrx5Q94s5eIXQYJgAydzvT_8L", "ucf101_stride4x4x4": "1uuB_8WzHP_bbBmfuaIV7PK_Itl3DyHY5", "kinetics_stride4x4x4": "1DOvOZnFAIQmux6hG7pN_HkyJZy3lXbCB", "kinetics_stride2x4x4": "1jvtjjtrtE4cy6pl7DK_zWFEPY3RZt2pB", } def __init__(self, config: VQVAEConfiguration): super().__init__() self.config = config self.embedding_dim = config.embedding_dim self.n_codes = config.n_codes self.encoder = Encoder(config.n_hiddens, config.n_res_layers, config.downsample) self.decoder = Decoder(config.n_hiddens, config.n_res_layers, config.downsample) self.pre_vq_conv = SamePadConv3d(config.n_hiddens, config.embedding_dim, 1) self.post_vq_conv = SamePadConv3d(config.embedding_dim, config.n_hiddens, 1) self.codebook = Codebook(config.n_codes, config.embedding_dim) def forward(self, x): z = self.pre_vq_conv(self.encoder(x)) vq_output = self.codebook(z) x_recon = self.decoder(self.post_vq_conv(vq_output["embeddings"])) recon_loss = F.mse_loss(x_recon, x) / 0.06 return recon_loss, x_recon, vq_output def encode(self, x: Tensor, include_embeddings: bool = False) -> Union[Tuple[Tensor, Tensor], Tensor]: h = self.pre_vq_conv(self.encoder(x)) vq_output: Dict[str, Tensor] = self.codebook(h) if include_embeddings: return vq_output["encodings"], vq_output["embeddings"] else: return vq_output["encodings"] def decode(self, encodings: Tensor) -> Tensor: h = F.embedding(encodings, self.codebook.embeddings) h = self.post_vq_conv(shift_dim(h, -1, 1)) return self.decoder(h) @classmethod def load_from_checkpoint(cls, model_path): if not os.path.isdir(model_path): """model downloaded from internet""" model_cpkt = torch.load(model_path) # Compatible with old videogpt model formats. if "hyper_parameters" in model_cpkt: hyper_parameters = vars(model_cpkt.get("hyper_parameters").get("args")) state_dict = model_cpkt.get("state_dict") model = cls(config=VQVAEConfiguration(**hyper_parameters)) model.load_state_dict(state_dict) return model else: raise RuntimeError("Model checkpoint has a wrong format.") else: with open(os.path.join(model_path, "config.json"), "r") as file: config = json.load(file) state_dict = torch.load(os.path.join(model_path, "pytorch_model.bin"), map_location="cpu") model = cls(config=VQVAEConfiguration(**config)) model.load_state_dict(state_dict) return model @classmethod def download_and_load_model(cls, model_name, cache_dir=None): from .....utils.downloader import gdown_download path = gdown_download( cls.DOWNLOADED_VQVAE[model_name], model_name, cache_dir=cache_dir ) return cls.load_from_checkpoint(path)