File size: 1,511 Bytes
8b8f607
7f898b9
8b8f607
 
 
 
 
 
 
7f898b9
 
 
 
 
8b8f607
 
 
 
 
 
 
7f898b9
 
 
 
8b8f607
7f898b9
8b8f607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc18b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
from dotenv import load_dotenv
import openai
from flask import Flask, request, jsonify, send_file
from transformers import pipeline
from gtts import gTTS

app = Flask(__name__)

# Load environment variables from .env file
load_dotenv()

openai.api_key = os.getenv("OPENAI_API_KEY")
os.environ["HF_HOME"] = os.getenv("HF_HOME")
pipe = pipeline(model="seeafricatz/kiaziboraasr")

def transcribe(audio_path):
    text = pipe(audio_path)["text"]
    return text

def generate_response(transcribed_text):
    response = openai.Completion.create(
        engine="davinci",
        prompt=transcribed_text,
        max_tokens=50
    )
    return response.choices[0].text

def inference(text):
    tts = gTTS(text, lang='sw')
    output_file = "tts_output.mp3"
    tts.save(output_file)
    return output_file

@app.route('/process_audio', methods=['POST'])
def process_audio():
    if 'audio' not in request.files:
        return jsonify({'error': 'No audio file provided'}), 400

    audio_file = request.files['audio']
    audio_path = "temp_audio.wav"
    audio_file.save(audio_path)

    transcribed_text = transcribe(audio_path)
    response_text = generate_response(transcribed_text)
    output_file = inference(response_text)

    return jsonify({
        'response_text': response_text,
        'response_audio_url': f'/audio/{output_file}'
    })

@app.route('/audio/<path:filename>')
def audio(filename):
    return send_file(filename, as_attachment=True)

if __name__ == '__main__':
    app.run()