lyimo commited on
Commit
518eabe
1 Parent(s): 1e246dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -1,8 +1,8 @@
1
  import gradio as gr
2
  import torch
3
  import torchaudio
4
- from speechbrain.inference.enhancement import SpectralMaskEnhancement
5
  from speechbrain.inference.separation import SepformerSeparation as separator
 
6
 
7
  # Load the enhancement model
8
  model = separator.from_hparams(
@@ -12,16 +12,23 @@ model = separator.from_hparams(
12
 
13
  # Define the enhancement function
14
  def enhance_audio(noisy_audio):
 
 
 
 
15
  # Load and add a batch dimension to the audio tensor
16
- noisy = model.load_audio(noisy_audio).unsqueeze(0)
17
 
18
  # Enhance the audio
19
  enhanced = model.enhance_batch(noisy, lengths=torch.tensor([1.0]))
20
 
21
- # Save enhanced audio to a temporary file
22
  enhanced_path = "enhanced.wav"
23
  torchaudio.save(enhanced_path, enhanced.cpu(), 16000)
24
 
 
 
 
25
  return enhanced_path
26
 
27
  # Create the Gradio interface
 
1
  import gradio as gr
2
  import torch
3
  import torchaudio
 
4
  from speechbrain.inference.separation import SepformerSeparation as separator
5
+ import os
6
 
7
  # Load the enhancement model
8
  model = separator.from_hparams(
 
12
 
13
  # Define the enhancement function
14
  def enhance_audio(noisy_audio):
15
+ # Convert MP3 to WAV
16
+ wav_audio = "temp_audio.wav"
17
+ torchaudio.save(wav_audio, *torchaudio.load(noisy_audio))
18
+
19
  # Load and add a batch dimension to the audio tensor
20
+ noisy = model.load_audio(wav_audio).unsqueeze(0)
21
 
22
  # Enhance the audio
23
  enhanced = model.enhance_batch(noisy, lengths=torch.tensor([1.0]))
24
 
25
+ # Save enhanced audio to a file
26
  enhanced_path = "enhanced.wav"
27
  torchaudio.save(enhanced_path, enhanced.cpu(), 16000)
28
 
29
+ # Clean up the temporary audio file
30
+ os.remove(wav_audio)
31
+
32
  return enhanced_path
33
 
34
  # Create the Gradio interface