import torch import torch.nn as nn from diffab.modules.common.geometry import construct_3d_basis, global_to_local, get_backbone_dihedral_angles from diffab.modules.common.layers import AngularEncoding from diffab.utils.protein.constants import BBHeavyAtom, AA class ResidueEmbedding(nn.Module): def __init__(self, feat_dim, max_num_atoms, max_aa_types=22): super().__init__() self.max_num_atoms = max_num_atoms self.max_aa_types = max_aa_types self.aatype_embed = nn.Embedding(self.max_aa_types, feat_dim) self.dihed_embed = AngularEncoding() self.type_embed = nn.Embedding(10, feat_dim, padding_idx=0) # 1: Heavy, 2: Light, 3: Ag infeat_dim = feat_dim + (self.max_aa_types*max_num_atoms*3) + self.dihed_embed.get_out_dim(3) + feat_dim self.mlp = nn.Sequential( nn.Linear(infeat_dim, feat_dim * 2), nn.ReLU(), nn.Linear(feat_dim * 2, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim) ) def forward(self, aa, res_nb, chain_nb, pos_atoms, mask_atoms, fragment_type, structure_mask=None, sequence_mask=None): """ Args: aa: (N, L). res_nb: (N, L). chain_nb: (N, L). pos_atoms: (N, L, A, 3). mask_atoms: (N, L, A). fragment_type: (N, L). structure_mask: (N, L), mask out unknown structures to generate. sequence_mask: (N, L), mask out unknown amino acids to generate. """ N, L = aa.size() mask_residue = mask_atoms[:, :, BBHeavyAtom.CA] # (N, L) # Remove other atoms pos_atoms = pos_atoms[:, :, :self.max_num_atoms] mask_atoms = mask_atoms[:, :, :self.max_num_atoms] # Amino acid identity features if sequence_mask is not None: # Avoid data leakage at training time aa = torch.where(sequence_mask, aa, torch.full_like(aa, fill_value=AA.UNK)) aa_feat = self.aatype_embed(aa) # (N, L, feat) # Coordinate features R = construct_3d_basis( pos_atoms[:, :, BBHeavyAtom.CA], pos_atoms[:, :, BBHeavyAtom.C], pos_atoms[:, :, BBHeavyAtom.N] ) t = pos_atoms[:, :, BBHeavyAtom.CA] crd = global_to_local(R, t, pos_atoms) # (N, L, A, 3) crd_mask = mask_atoms[:, :, :, None].expand_as(crd) crd = torch.where(crd_mask, crd, torch.zeros_like(crd)) aa_expand = aa[:, :, None, None, None].expand(N, L, self.max_aa_types, self.max_num_atoms, 3) rng_expand = torch.arange(0, self.max_aa_types)[None, None, :, None, None].expand(N, L, self.max_aa_types, self.max_num_atoms, 3).to(aa_expand) place_mask = (aa_expand == rng_expand) crd_expand = crd[:, :, None, :, :].expand(N, L, self.max_aa_types, self.max_num_atoms, 3) crd_expand = torch.where(place_mask, crd_expand, torch.zeros_like(crd_expand)) crd_feat = crd_expand.reshape(N, L, self.max_aa_types*self.max_num_atoms*3) if structure_mask is not None: # Avoid data leakage at training time crd_feat = crd_feat * structure_mask[:, :, None] # Backbone dihedral features bb_dihedral, mask_bb_dihed = get_backbone_dihedral_angles(pos_atoms, chain_nb=chain_nb, res_nb=res_nb, mask=mask_residue) dihed_feat = self.dihed_embed(bb_dihedral[:, :, :, None]) * mask_bb_dihed[:, :, :, None] # (N, L, 3, dihed/3) dihed_feat = dihed_feat.reshape(N, L, -1) if structure_mask is not None: # Avoid data leakage at training time dihed_mask = torch.logical_and( structure_mask, torch.logical_and( torch.roll(structure_mask, shifts=+1, dims=1), torch.roll(structure_mask, shifts=-1, dims=1) ), ) # Avoid slight data leakage via dihedral angles of anchor residues dihed_feat = dihed_feat * dihed_mask[:, :, None] # Type feature type_feat = self.type_embed(fragment_type) # (N, L, feat) out_feat = self.mlp(torch.cat([aa_feat, crd_feat, dihed_feat, type_feat], dim=-1)) # (N, L, F) out_feat = out_feat * mask_residue[:, :, None] return out_feat