import torch import torch.nn as nn import torch.nn.functional as F from diffab.modules.common.geometry import angstrom_to_nm, pairwise_dihedrals from diffab.modules.common.layers import AngularEncoding from diffab.utils.protein.constants import BBHeavyAtom, AA class PairEmbedding(nn.Module): def __init__(self, feat_dim, max_num_atoms, max_aa_types=22, max_relpos=32): super().__init__() self.max_num_atoms = max_num_atoms self.max_aa_types = max_aa_types self.max_relpos = max_relpos self.aa_pair_embed = nn.Embedding(self.max_aa_types*self.max_aa_types, feat_dim) self.relpos_embed = nn.Embedding(2*max_relpos+1, feat_dim) self.aapair_to_distcoef = nn.Embedding(self.max_aa_types*self.max_aa_types, max_num_atoms*max_num_atoms) nn.init.zeros_(self.aapair_to_distcoef.weight) self.distance_embed = nn.Sequential( nn.Linear(max_num_atoms*max_num_atoms, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), ) self.dihedral_embed = AngularEncoding() feat_dihed_dim = self.dihedral_embed.get_out_dim(2) # Phi and Psi infeat_dim = feat_dim+feat_dim+feat_dim+feat_dihed_dim self.out_mlp = nn.Sequential( nn.Linear(infeat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), ) def forward(self, aa, res_nb, chain_nb, pos_atoms, mask_atoms, structure_mask=None, sequence_mask=None): """ Args: aa: (N, L). res_nb: (N, L). chain_nb: (N, L). pos_atoms: (N, L, A, 3) mask_atoms: (N, L, A) structure_mask: (N, L) sequence_mask: (N, L), mask out unknown amino acids to generate. Returns: (N, L, L, feat_dim) """ N, L = aa.size() # Remove other atoms pos_atoms = pos_atoms[:, :, :self.max_num_atoms] mask_atoms = mask_atoms[:, :, :self.max_num_atoms] mask_residue = mask_atoms[:, :, BBHeavyAtom.CA] # (N, L) mask_pair = mask_residue[:, :, None] * mask_residue[:, None, :] pair_structure_mask = structure_mask[:, :, None] * structure_mask[:, None, :] if structure_mask is not None else None # Pair identities if sequence_mask is not None: # Avoid data leakage at training time aa = torch.where(sequence_mask, aa, torch.full_like(aa, fill_value=AA.UNK)) aa_pair = aa[:,:,None]*self.max_aa_types + aa[:,None,:] # (N, L, L) feat_aapair = self.aa_pair_embed(aa_pair) # Relative sequential positions same_chain = (chain_nb[:, :, None] == chain_nb[:, None, :]) relpos = torch.clamp( res_nb[:,:,None] - res_nb[:,None,:], min=-self.max_relpos, max=self.max_relpos, ) # (N, L, L) feat_relpos = self.relpos_embed(relpos + self.max_relpos) * same_chain[:,:,:,None] # Distances d = angstrom_to_nm(torch.linalg.norm( pos_atoms[:,:,None,:,None] - pos_atoms[:,None,:,None,:], dim = -1, ord = 2, )).reshape(N, L, L, -1) # (N, L, L, A*A) c = F.softplus(self.aapair_to_distcoef(aa_pair)) # (N, L, L, A*A) d_gauss = torch.exp(-1 * c * d**2) mask_atom_pair = (mask_atoms[:,:,None,:,None] * mask_atoms[:,None,:,None,:]).reshape(N, L, L, -1) feat_dist = self.distance_embed(d_gauss * mask_atom_pair) if pair_structure_mask is not None: # Avoid data leakage at training time feat_dist = feat_dist * pair_structure_mask[:, :, :, None] # Orientations dihed = pairwise_dihedrals(pos_atoms) # (N, L, L, 2) feat_dihed = self.dihedral_embed(dihed) if pair_structure_mask is not None: # Avoid data leakage at training time feat_dihed = feat_dihed * pair_structure_mask[:, :, :, None] # All feat_all = torch.cat([feat_aapair, feat_relpos, feat_dist, feat_dihed], dim=-1) feat_all = self.out_mlp(feat_all) # (N, L, L, F) feat_all = feat_all * mask_pair[:, :, :, None] return feat_all