import os os.system('pip install duckduckgo-search -U') os.system('pip install huggingface_hub -U') os.system('pip install requests -U') os.system('pip install autotrain -U') import requests import json from huggingface_hub import HfFolder from autotrain import AutoTrain def get_answers_from_duckduckgo(query): url = f"https://api.duckduckgo.com/?q={query}&format=json" response = requests.get(url) data = response.json() if 'RelatedTopics' in data: answers = [topic['Text'] for topic in data['RelatedTopics'] if 'Text' in topic] return answers return [] def prepare_training_data(answers, query): training_data = [] for answer in answers: training_data.append({"text": query, "label": answer}) return training_data def main(): user_query = input("Type your question: ") answers = get_answers_from_duckduckgo(user_query) if not answers: print("No answers found.") return training_data = prepare_training_data(answers, user_query) training_file = 'training_data.json' with open(training_file, 'w') as f: json.dump(training_data, f) print("Training data prepared and saved!") auto_train = AutoTrain(dataset_path=training_file) auto_train.train(model_name="distilbert-base-uncased", num_train_epochs=3) print("Training completed!") if __name__ == "__main__": main()