from fastapi import FastAPI from transformers import AutoModelForCausalLM, AutoProcessor from qwen_vl_utils import process_vision_info import torch app = FastAPI() model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.float16, device_map="auto") processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") @app.post("/predict") async def predict(messages: list): # Processamento e inferĂȘncia text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) return {"response": output_text}