|
import gradio as gr |
|
from transformers import FlavaModel, BertTokenizer, FlavaFeatureExtractor |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
images="dog.jpg" |
|
model = FlavaModel.from_pretrained("facebook/flava-full") |
|
model.eval() |
|
fe = FlavaFeatureExtractor.from_pretrained("facebook/flava-full") |
|
tokenizer = BertTokenizer.from_pretrained("facebook/flava-full") |
|
|
|
def shot(image, labels_text): |
|
PIL_image = Image.fromarray(np.uint8(image)).convert('RGB') |
|
labels = labels_text.split(",") |
|
label_with_template = [f"This is a photo of a {label}" for label in labels] |
|
image_input = fe([PIL_image], return_tensors="pt") |
|
text_inputs = tokenizer(label_with_template, padding="max_length", return_tensors="pt") |
|
|
|
image_embeddings = model.get_image_features(**image_input)[:, 0, :] |
|
text_embeddings = model.get_text_features(**text_inputs)[:, 0, :] |
|
similarities = list(torch.nn.functional.softmax((text_embeddings @ image_embeddings.T).squeeze(0), dim=0)) |
|
return {label: similarities[idx].item() for idx, label in enumerate(labels)} |
|
|
|
iface = gr.Interface(shot, |
|
["image", "text"], |
|
"label", |
|
examples=[["dog.jpg", "dog,cat,bird"], |
|
["germany.jpg", "germany,belgium,colombia"], |
|
["rocket.jpg", "car,rocket,train"] |
|
], |
|
description="Add a picture and a list of labels separated by commas", |
|
title="FLAVA Zero-shot Image Classification") |
|
|
|
iface.launch() |