lord-reso commited on
Commit
b626bbe
·
1 Parent(s): 97b2f64

Add log messages

Browse files
Files changed (6) hide show
  1. README.md +1 -1
  2. app.py +5 -1
  3. assets/room.jpg +0 -0
  4. assets/{test.png → test1.png} +0 -0
  5. assets/test2.jpg +0 -0
  6. client.py +2 -2
README.md CHANGED
@@ -6,7 +6,7 @@ colorTo: gray
6
  sdk: docker
7
  pinned: false
8
  license: apache-2.0
9
- short_description: API endpoint for Scene understanding using Llama 3.2 Vision
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
6
  sdk: docker
7
  pinned: false
8
  license: apache-2.0
9
+ short_description: API endpoint for Scene understanding using Moondream2
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -27,18 +27,22 @@ tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
27
 
28
  @app.get("/")
29
  def read_root():
30
- data = {"Voice": "Cloning", "Status": "Success"}
31
  return JSONResponse(content=data)
32
 
33
  @app.post("/generate-text/")
34
  async def generate_text(description: str = Form(...), file: UploadFile = File(...)):
 
 
35
  # Convert uploaded file to PIL image
36
  image = Image.open(file.file).convert("RGB")
 
37
 
38
  # Encode the image using the model
39
  enc_image = model.encode_image(image)
40
 
41
  # Answer the question using the model and tokenizer
42
  generated_text = model.answer_question(enc_image, description, tokenizer)
 
43
 
44
  return {"generated_text": generated_text}
 
27
 
28
  @app.get("/")
29
  def read_root():
30
+ data = {"Scene": "Understanding", "Status": "Success"}
31
  return JSONResponse(content=data)
32
 
33
  @app.post("/generate-text/")
34
  async def generate_text(description: str = Form(...), file: UploadFile = File(...)):
35
+ print("generate_text endpoint called with description:", description)
36
+
37
  # Convert uploaded file to PIL image
38
  image = Image.open(file.file).convert("RGB")
39
+ print("Image uploaded and converted successfully")
40
 
41
  # Encode the image using the model
42
  enc_image = model.encode_image(image)
43
 
44
  # Answer the question using the model and tokenizer
45
  generated_text = model.answer_question(enc_image, description, tokenizer)
46
+ print("Text generated successfully")
47
 
48
  return {"generated_text": generated_text}
assets/room.jpg ADDED
assets/{test.png → test1.png} RENAMED
File without changes
assets/test2.jpg ADDED
client.py CHANGED
@@ -1,8 +1,8 @@
1
  import requests
2
 
3
- url = "http://127.0.0.1:8000/generate-text/"
4
  description = "Describe this image highlighting the positions of the objects. Use simple English words."
5
- file_path = "assets/test.png"
6
 
7
  with open(file_path, "rb") as image_file:
8
  files = {"file": image_file}
 
1
  import requests
2
 
3
+ url = "https://lord-reso-scene-understanding.hf.space/generate-text/"
4
  description = "Describe this image highlighting the positions of the objects. Use simple English words."
5
+ file_path = "assets/room.jpg"
6
 
7
  with open(file_path, "rb") as image_file:
8
  files = {"file": image_file}