Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the pre-trained language model
|
6 |
+
model_name = "bert-base-uncased"
|
7 |
+
model = transformers.pipeline("text-classification", model=model_name)
|
8 |
+
|
9 |
+
# Streamlit App
|
10 |
+
def main():
|
11 |
+
st.title("Sentence Category Classifier")
|
12 |
+
|
13 |
+
# Input search sentence
|
14 |
+
search_query = st.text_input("Enter a sentence:")
|
15 |
+
|
16 |
+
result = ""
|
17 |
+
|
18 |
+
# Process the search sentence when the user clicks the Search button
|
19 |
+
if st.button("Search"):
|
20 |
+
if search_query:
|
21 |
+
# Classify the sentence using the pre-trained model
|
22 |
+
categories = classify_sentence(search_query)
|
23 |
+
|
24 |
+
# Display the categories as output
|
25 |
+
if categories:
|
26 |
+
result = f"The sentence belongs to the following categories:\n\n"
|
27 |
+
for category in categories:
|
28 |
+
result += f"• {category}\n"
|
29 |
+
else:
|
30 |
+
result = "No categories found for the sentence."
|
31 |
+
|
32 |
+
# Display the result
|
33 |
+
st.text(result)
|
34 |
+
|
35 |
+
# Function to classify the sentence using the pre-trained language model
|
36 |
+
@st.cache(allow_output_mutation=True)
|
37 |
+
def classify_sentence(query):
|
38 |
+
# Classify the sentence using the pre-trained model
|
39 |
+
categories = model(query)
|
40 |
+
|
41 |
+
# Extract the category labels from the model's output
|
42 |
+
category_labels = [category['label'] for category in categories]
|
43 |
+
|
44 |
+
return category_labels
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
main()
|