File size: 13,044 Bytes
570c8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85d807
570c8ab
 
 
 
 
 
 
 
 
 
 
49ef91b
e7fbb2d
570c8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d0d4d
570c8ab
 
 
 
 
 
 
 
 
 
f9d0d4d
570c8ab
 
 
11efcdb
570c8ab
 
 
 
 
e85d807
570c8ab
e85d807
570c8ab
e85d807
570c8ab
 
 
 
 
 
 
be81ba7
570c8ab
 
 
 
 
 
 
 
be81ba7
11efcdb
 
be81ba7
 
11efcdb
e85d807
570c8ab
 
 
 
 
f9d0d4d
 
570c8ab
 
 
 
11efcdb
570c8ab
 
 
 
 
 
 
 
49b5b9a
 
570c8ab
f7d072b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570c8ab
 
 
 
 
 
 
 
49b5b9a
 
3bfb981
f7d072b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbf048
f7d072b
 
 
570c8ab
 
49b5b9a
570c8ab
 
f9d0d4d
570c8ab
 
 
 
f9d0d4d
570c8ab
 
 
 
 
 
 
fb043b2
570c8ab
fb043b2
570c8ab
 
 
 
 
 
 
49b5b9a
 
570c8ab
49b5b9a
 
f9d0d4d
570c8ab
 
 
 
 
 
f9d0d4d
570c8ab
 
 
49b5b9a
f7d072b
570c8ab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os
import sys
import importlib
from subprocess import call
from pathlib import Path

import json
import math
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from scipy.io.wavfile import write
import gradio as gr
import scipy.io.wavfile
import numpy as np
from libs.audio import wav2ogg, float2pcm

def run_cmd(command):
    try:
        # print(command)
        call(command, shell=True)
    except KeyboardInterrupt:
        print("Process interrupted")
        sys.exit(1)

current = os.getcwd()
full = current + "/vits/monotonic_align"
os.chdir(full)
run_cmd("python3 setup.py build_ext --inplace")
run_cmd("mv vits/monotonic_align/* ./")
run_cmd("rm -rf vits")
# run_cmd(f"mv {current}/lfs/*.pth {current}/pretrained/")
# run_cmd("apt-get install espeak -y")
# run_cmd("gdown 'https://drive.google.com/uc?id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT'")
os.chdir("../..")

from lojban.lojban import lojban2ipa

sys.path.insert(0, './vits')
import vits.commons as commons
import vits.utils as utils
from vits.data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from vits.models import SynthesizerTrn
from vits.text.symbols import symbols
from vits.text import _clean_text
from vits.text import cleaners
from vits.text.symbols import symbols

sys.path.insert(0, './nix_tts_simple')
from nix_tts_simple.tts import generate_voice

language_id_lookup = {
    "Lojban": "jbo",
    "Transcription": "ipa",
    "English": "en",
    "German": "de",
    "Greek": "el",
    "Spanish": "es",
    "Finnish": "fi",
    "Russian": "ru",
    "Hungarian": "hu",
    "Dutch": "nl",
    "French": "fr",
    'Polish': "pl",
    'Portuguese': "pt",
    'Italian': "it",
}

# def download_pretrained():
#     if not all(Path(file).exists() for file in ["pretrained_ljs.pth", "pretrained_vctk.pth"]):
#         url = "https://drive.google.com/uc?id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT"
#         gdown.download_folder(url, quiet=True, use_cookies=False)

# Mappings from symbol to numeric ID and vice versa:
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
_id_to_symbol = {i: s for i, s in enumerate(symbols)}


def text_to_sequence(text, language, cleaner_names, mode):
    '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
        Args:
        text: string to convert to a sequence
        cleaner_names: names of the cleaner functions to run the text through
        Returns:
        List of integers corresponding to the symbols in the text
    '''
    sequence = []

    if language == 'jbo':
        clean_text = lojban2ipa(text, mode)
    elif language == 'ipa':
        clean_text = text
    else:
        clean_text = _clean_text(text, cleaner_names)

    for symbol in clean_text:
        symbol_id = _symbol_to_id[symbol]
        sequence += [symbol_id]
    return clean_text, sequence


def get_text(text, language, hps, mode):
    ipa_text, text_norm = text_to_sequence(
        text, language, hps.data.text_cleaners, mode)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm_tensor = torch.LongTensor(text_norm)
    return ipa_text, text_norm_tensor


def load_checkpoints():
    hps = utils.get_hparams_from_file(current + "/vits/configs/ljs_base.json")
    model = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **hps.model)
    _ = model.eval()

    _ = utils.load_checkpoint(current + "/pretrained/vits/pretrained_ljs.pth", model, None)

    hps_vctk = utils.get_hparams_from_file(current + "/vits/configs/vctk_base.json")
    net_g_vctk = SynthesizerTrn(
        len(symbols),
        hps_vctk.data.filter_length // 2 + 1,
        hps_vctk.train.segment_size // hps_vctk.data.hop_length,
        n_speakers=hps_vctk.data.n_speakers,
        **hps_vctk.model)
    _ = model.eval()

    _ = utils.load_checkpoint(current + "/pretrained/vits/pretrained_vctk.pth", net_g_vctk, None)

    return model, hps, net_g_vctk, hps_vctk

def inference(text, language, noise_scale, noise_scale_w, length_scale, voice, file_format):
    if len(text.strip())==0:
        return []
    language = language.split()[0]
    language = language_id_lookup[language] if bool(
        language_id_lookup[language]) else "jbo"
    result = []
    if voice == 'Nix-Deterministic' and language == 'jbo':
        result = generate_voice(lojban2ipa(text,'nix'), current+"/pretrained/nix-tts/nix-ljspeech-v0.1")
    elif voice == 'Nix-Stochastic' and language == 'jbo':
        result = generate_voice(lojban2ipa(text,'nix'), current+"/pretrained/nix-tts/nix-ljspeech-sdp-v0.1")
    elif voice == 'LJS':
        ipa_text, stn_tst = get_text(text, language, hps, mode="VITS")
        with torch.no_grad():
            x_tst = stn_tst.unsqueeze(0)
            x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
            audio = model.infer(x_tst, x_tst_lengths, noise_scale=noise_scale,
                                noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.float().numpy()
            result = [ipa_text, (hps_vctk.data.sampling_rate, audio)]
    else:
        ipa_text, stn_tst = get_text(text, language, hps_vctk, mode="VITS")
        with torch.no_grad():
            x_tst = stn_tst.unsqueeze(0)
            x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
            sid = torch.LongTensor([voice])
            audio = model_vctk.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
                                     noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
            result = [ipa_text, (hps_vctk.data.sampling_rate, audio)]
    if file_format == 'ogg':
        result = [result[0], wav2ogg(result[1][1], result[1][0], text, language)]
    else:
        result = [result[0], (result[1][0], float2pcm(result[1][1]))]

    return result

# download_pretrained()
model, hps, model_vctk, hps_vctk = load_checkpoints()

defaults = {
    "text": "coi munje",
    "language": "Lojban",
    "noise_scale": .667,
    "noise_scale_w": .8,
    "speed": 1.8,
    "voice": "LJS",
    "example": ["", "Lojban", 0.667, 0.8, 1.8,"LJS","wav"]
}

inputs = []
outputs = []

css = """
h1 {font-size:200%;}
h2 {font-size:120%;}
h2 a {color: #0020c5;text-decoration: underline;}
p a {text-decoration: underline;}
img {display: inline-block;height:32px;}
#velsku {
  text-align: left;
  margin: 0;
  /* display: none; */
  /* justify-content: baseline; */
  /* align-items: flex-start; */
  padding: 0;
  /* height: 28px; */
  width: 100%;
  bottom: 0px;
  left: 0px;
  position: fixed;
  background: white;
  z-index: 10;
}

#velsku_sebenji {
  padding: 0.1rem;
  display: flex;
  white-space: nowrap;
  text-overflow: ellipsis;
  box-shadow: 0 0 0 1px rgb(56 136 233), 0 0 0 2px rgb(34 87 213),
    0 0 0 3px rgb(38 99 224), 0 0 0 4px rgb(25 65 165);
  margin-top: 3px;
}

.velsku_pamei {
  white-space: nowrap;
  overflow: hidden;
  text-overflow: ellipsis;
}

.velsku_pixra {
  max-height: 20px;
  margin-right: 0.2rem;
}

#velsku a {
  color: #2b79e0;
  text-decoration: none;
}
"""

def conditionally_hide_widgets(voice):
    if str(voice).startswith("Nix"):
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    else:
        return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

title = "<h1>la vitci voksa - <i><img src='/file/assets/jbolanci.png'/>Lojban text-to-speech</i></h1>"
description = "<h2>VITS & Nix-TTS text-to-speech adapted to Lojban. Join <a href='https://discord.gg/BVm4EYR'>Lojban Discord live chat</a> to discuss further.</h2>"
article = "<p style='text-align: center'><a href='https://github.com/jaywalnut310/vits'>VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech</a> | <a href='https://github.com/rendchevi/nix-tts'>Nix-TTS: Lightweight and End-to-end Text-to-Speech via Module-wise Distillation</a></p>"
chat = """
<script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.5.1/socket.io.js"></script>"
<script>
      document.addEventListener("DOMContentLoaded", () => {
        var socket1Chat_connected;
        var socket1Chat = io("wss://jbotcan.org:9091", {
          transports: ["polling", "websocket"],
        });
        // if (socket1Chat) {
        socket1Chat.on("connect", function () {
          console.log(socket1Chat);
          socket1Chat_connected = true;
        });
        socket1Chat.on("connect_error", function () {
          console.log("1chat connection error");
        });

        function trimSocketChunk(text) {
          return text
            .replace(/[\n\r]+$/gims, " ")
            .replace(/<br *\/?>/gims, " ");
          // .split('<')[0]
        }
        socket1Chat.on("sentFrom", function (data) {
          if (!socket1Chat_connected) return;
          const i = data.data;
          const msg = {
            d: trimSocketChunk(i.chunk),
            s: i.channelId,
            w: i.author,
          };

          const velsku = document.getElementById("velsku_sebenji");
          velsku.innerHTML = `<img src="https://la-lojban.github.io/sutysisku/pixra/nunsku.svg" class="velsku_pixra"/> <span class="velsku_pamei">[${msg.s}] ${msg.w}: ${msg.d}</span>`;
        });
        socket1Chat.on("history", function (data) {
          if (!socket1Chat_connected) return;
          const i = data.slice(-1)[0];
          if (!i) return;
          const msg = {
            d: trimSocketChunk(i.chunk),
            s: i.channelId,
            w: i.author,
          };
          const velsku = document.getElementById("velsku_sebenji");
          velsku.innerHTML = `<img src="https://la-lojban.github.io/sutysisku/pixra/nunsku.svg" class="velsku_pixra"/> <span class="velsku_pamei">[${msg.s}] ${msg.w}: ${msg.d}</span>`;
        });
        // }
      });
    </script>
    <div id="velsku" class="noselect">
                <a id="velsku_sebenji" href="https://discord.gg/4KhzRzpmVr" target="_blank">
                <img src="https://la-lojban.github.io/sutysisku/pixra/nunsku.svg" class="velsku_pixra"/>
                Live chat on Discord
                </a>
                </div>
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(title)
    gr.HTML(description)    
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(lines=4, value=defaults["text"], label="Input text", placeholder="add your text, or click one of the examples to load them")
            langs = gr.Radio([
                'Lojban',
                'English',
                'Transcription',
                ], value=defaults["language"], label="Language")
            voices = gr.Radio(["LJS", 0, 1, 2, 3, 4, "Nix-Deterministic", "Nix-Stochastic"], value=defaults["voice"], label="Voice")
            noise_scale = gr.Slider(label="Noise scale", minimum=0, maximum=2,
                step=0.1, value=defaults["noise_scale"])
            noise_scale_w = gr.Slider(label="Noise scale W", minimum=0, maximum=2,
                step=0.1, value=defaults["noise_scale_w"])
            slowness = gr.Slider(label="Slowness", minimum=0.1, maximum=3,
                step=0.1, value=defaults["speed"])
            file_format = gr.Radio(["wav", "ogg"], value="wav", label="File format")
            
            inputs = [input_text, langs, noise_scale, noise_scale_w, slowness, voices, file_format]
            
            # events
            vits_inputs = [noise_scale, noise_scale_w, slowness]
            voices.change(fn=conditionally_hide_widgets, inputs=voices,outputs=vits_inputs)

        with gr.Column():
            ipa_block = gr.Textbox(label="International Phonetic Alphabet")
            audio = gr.Audio(type="numpy", label="Output audio")        

            outputs = [ ipa_block, audio ]
            
            btn = gr.Button("Vocalize")
            btn.click(fn=inference, inputs=inputs, outputs=outputs, api_name="cupra")
            
            examples = list(map(lambda el: el[0:len(el)] + defaults["example"][len(el):], [
                ["coi ro do ma nuzba", "Lojban"],
                ["mi djica lo nu do zvati ti", "Lojban", 0.667, 0.8, 1.8,4],
                ["mu xagji sofybakni cu zvati le purdi", "Lojban", 0.667, 0.8, 1.8, "Nix-Deterministic"],
                ["ni'o le pa tirxu be me'e zo .teris. pu ki kansa le za'u pendo be le nei le ka xabju le foldi be loi spati", "Lojban"],
                [", miː dʒˈiːʃaː loːnʊuː doː zvˈaːtiː tiː.", "Transcription"],
                ["We propose VITS, Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.", "English"],
            ]))
            gr.Examples(examples, inputs, fn=inference, outputs=outputs, cache_examples=True, run_on_click=True)
    gr.HTML(article)
    gr.HTML(chat)

demo.launch(server_name="0.0.0.0")