Gregor Betz
commited on
config
Browse files- app.py +21 -74
- backend/config.py +78 -0
- config.yaml +10 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,42 +1,30 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import asyncio
|
4 |
-
import copy
|
5 |
import logging
|
6 |
-
import os
|
7 |
import uuid
|
|
|
8 |
|
9 |
import gradio as gr # type: ignore
|
10 |
|
11 |
from logikon.backends.chat_models_with_grammar import create_logits_model, LogitsModel, LLMBackends
|
12 |
from logikon.guides.proscons.recursive_balancing_guide import RecursiveBalancingGuide, RecursiveBalancingGuideConfig
|
13 |
|
|
|
14 |
from backend.messages_processing import add_details, history_to_langchain_format
|
15 |
from backend.svg_processing import postprocess_svg
|
16 |
|
17 |
logging.basicConfig(level=logging.DEBUG)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
# Default client
|
21 |
-
INFERENCE_SERVER_URL = "https://api-inference.huggingface.co/models/{model_id}"
|
22 |
-
MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
|
23 |
-
CLIENT_MODEL_KWARGS = {
|
24 |
-
"max_tokens": 800,
|
25 |
-
"temperature": 0.6,
|
26 |
-
}
|
27 |
-
|
28 |
-
GUIDE_KWARGS = {
|
29 |
-
"expert_model": "HuggingFaceH4/zephyr-7b-beta",
|
30 |
-
# "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
31 |
-
"inference_server_url": "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta",
|
32 |
-
# "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-70B-Instruct",
|
33 |
-
"llm_backend": "HFChat",
|
34 |
-
"classifier_kwargs": {
|
35 |
-
"model_id": "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
|
36 |
-
"inference_server_url": "https://api-inference.huggingface.co/models/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
|
37 |
-
"batch_size": 8,
|
38 |
-
},
|
39 |
-
}
|
40 |
|
41 |
EXAMPLES = [
|
42 |
("We're a nature-loving family with three kids, have some money left, and no plans "
|
@@ -106,31 +94,15 @@ CHATBOT_INSTRUCTIONS = (
|
|
106 |
)
|
107 |
|
108 |
|
109 |
-
logging.info(f"Reasoning guide expert model is {GUIDE_KWARGS['expert_model']}.")
|
110 |
-
|
111 |
-
|
112 |
def new_conversation_id():
|
113 |
conversation_id = str(uuid.uuid4())
|
114 |
print(f"New conversation with conversation ID: {conversation_id}")
|
115 |
return conversation_id
|
116 |
|
117 |
|
118 |
-
def setup_client_llm(
|
119 |
-
client_model_id,
|
120 |
-
client_inference_url,
|
121 |
-
client_inference_token,
|
122 |
-
client_backend,
|
123 |
-
client_temperature,
|
124 |
-
) -> LogitsModel | None:
|
125 |
try:
|
126 |
-
llm = create_logits_model(
|
127 |
-
model_id=client_model_id,
|
128 |
-
inference_server_url=client_inference_url,
|
129 |
-
api_key=client_inference_token if client_inference_token else os.getenv("HF_TOKEN"),
|
130 |
-
llm_backend=client_backend,
|
131 |
-
max_tokens=CLIENT_MODEL_KWARGS["max_tokens"],
|
132 |
-
temperature=client_temperature,
|
133 |
-
)
|
134 |
except Exception as e:
|
135 |
logging.error(f"When setting up client llm: Error: {e}")
|
136 |
return False
|
@@ -155,26 +127,17 @@ def add_message(history, message, conversation_id):
|
|
155 |
|
156 |
async def bot(
|
157 |
history,
|
158 |
-
|
159 |
-
|
160 |
-
client_inference_token,
|
161 |
-
client_backend,
|
162 |
-
client_temperature,
|
163 |
conversation_id,
|
164 |
progress=gr.Progress(),
|
165 |
):
|
166 |
|
167 |
-
client_llm = setup_client_llm(
|
168 |
-
client_model_id,
|
169 |
-
client_inference_url,
|
170 |
-
client_inference_token,
|
171 |
-
client_backend,
|
172 |
-
client_temperature,
|
173 |
-
)
|
174 |
|
175 |
if not client_llm:
|
176 |
raise gr.Error(
|
177 |
-
"Failed to set up
|
178 |
duration=0
|
179 |
)
|
180 |
|
@@ -184,10 +147,6 @@ async def bot(
|
|
184 |
# use guide always and exclusively at first turn
|
185 |
if len(history_langchain_format) <= 1:
|
186 |
|
187 |
-
guide_kwargs = copy.deepcopy(GUIDE_KWARGS)
|
188 |
-
guide_kwargs["api_key"] = os.getenv("HF_TOKEN") # expert model api key
|
189 |
-
guide_kwargs["classifier_kwargs"]["api_key"] = os.getenv("HF_TOKEN") # classifier api key
|
190 |
-
|
191 |
guide_config = RecursiveBalancingGuideConfig(**guide_kwargs)
|
192 |
guide = RecursiveBalancingGuide(tourist_llm=client_llm, config=guide_config)
|
193 |
|
@@ -244,6 +203,9 @@ with gr.Blocks() as demo:
|
|
244 |
conversation_id = gr.State(str(uuid.uuid4()))
|
245 |
tos_approved = gr.State(False)
|
246 |
|
|
|
|
|
|
|
247 |
|
248 |
with gr.Tab(label="Chatbot", visible=False) as chatbot_tab:
|
249 |
|
@@ -258,29 +220,14 @@ with gr.Blocks() as demo:
|
|
258 |
clear = gr.ClearButton([chat_input, chatbot])
|
259 |
gr.Examples([{"text": e, "files":[]} for e in EXAMPLES], chat_input)
|
260 |
|
261 |
-
# configs
|
262 |
-
with gr.Accordion("Client LLM Configuration", open=False):
|
263 |
-
gr.Markdown("Configure your client LLM that underpins this chatbot and is guided through the reasoning process.")
|
264 |
-
with gr.Row():
|
265 |
-
with gr.Column(2):
|
266 |
-
client_backend = gr.Dropdown(choices=[b.value for b in LLMBackends], value=LLMBackends.HFChat.value, label="LLM Inference Backend")
|
267 |
-
client_model_id = gr.Textbox(MODEL_ID, label="Model ID", max_lines=1)
|
268 |
-
client_inference_url = gr.Textbox(INFERENCE_SERVER_URL.format(model_id=MODEL_ID), label="Inference Server URL", max_lines=1)
|
269 |
-
client_inference_token = gr.Textbox("", label="Inference Token", max_lines=1, placeholder="Not required with HF Inference Api (default)", type="password")
|
270 |
-
with gr.Column(1):
|
271 |
-
client_temperature = gr.Slider(0, 1.0, value = CLIENT_MODEL_KWARGS["temperature"], label="Temperature")
|
272 |
-
|
273 |
# logic
|
274 |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input, conversation_id], [chatbot, chat_input, conversation_id])
|
275 |
bot_msg = chat_msg.then(
|
276 |
bot,
|
277 |
[
|
278 |
chatbot,
|
279 |
-
|
280 |
-
|
281 |
-
client_inference_token,
|
282 |
-
client_backend,
|
283 |
-
client_temperature,
|
284 |
conversation_id
|
285 |
],
|
286 |
chatbot,
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import asyncio
|
|
|
4 |
import logging
|
|
|
5 |
import uuid
|
6 |
+
import yaml
|
7 |
|
8 |
import gradio as gr # type: ignore
|
9 |
|
10 |
from logikon.backends.chat_models_with_grammar import create_logits_model, LogitsModel, LLMBackends
|
11 |
from logikon.guides.proscons.recursive_balancing_guide import RecursiveBalancingGuide, RecursiveBalancingGuideConfig
|
12 |
|
13 |
+
from backend.config import process_config
|
14 |
from backend.messages_processing import add_details, history_to_langchain_format
|
15 |
from backend.svg_processing import postprocess_svg
|
16 |
|
17 |
logging.basicConfig(level=logging.DEBUG)
|
18 |
|
19 |
+
with open("config.yaml") as stream:
|
20 |
+
try:
|
21 |
+
DEMO_CONFIG = yaml.safe_load(stream)
|
22 |
+
logging.debug(f"Config: {DEMO_CONFIG}")
|
23 |
+
except yaml.YAMLError as exc:
|
24 |
+
logging.error(f"Error loading config: {exc}")
|
25 |
+
raise exc
|
26 |
+
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
EXAMPLES = [
|
30 |
("We're a nature-loving family with three kids, have some money left, and no plans "
|
|
|
94 |
)
|
95 |
|
96 |
|
|
|
|
|
|
|
97 |
def new_conversation_id():
|
98 |
conversation_id = str(uuid.uuid4())
|
99 |
print(f"New conversation with conversation ID: {conversation_id}")
|
100 |
return conversation_id
|
101 |
|
102 |
|
103 |
+
def setup_client_llm(**client_kwargs) -> LogitsModel | None:
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
try:
|
105 |
+
llm = create_logits_model(**client_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
except Exception as e:
|
107 |
logging.error(f"When setting up client llm: Error: {e}")
|
108 |
return False
|
|
|
127 |
|
128 |
async def bot(
|
129 |
history,
|
130 |
+
client_kwargs,
|
131 |
+
guide_kwargs,
|
|
|
|
|
|
|
132 |
conversation_id,
|
133 |
progress=gr.Progress(),
|
134 |
):
|
135 |
|
136 |
+
client_llm = setup_client_llm(**client_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
if not client_llm:
|
139 |
raise gr.Error(
|
140 |
+
"Failed to set up client LLM.",
|
141 |
duration=0
|
142 |
)
|
143 |
|
|
|
147 |
# use guide always and exclusively at first turn
|
148 |
if len(history_langchain_format) <= 1:
|
149 |
|
|
|
|
|
|
|
|
|
150 |
guide_config = RecursiveBalancingGuideConfig(**guide_kwargs)
|
151 |
guide = RecursiveBalancingGuide(tourist_llm=client_llm, config=guide_config)
|
152 |
|
|
|
203 |
conversation_id = gr.State(str(uuid.uuid4()))
|
204 |
tos_approved = gr.State(False)
|
205 |
|
206 |
+
client_kwargs, guide_kwargs = process_config(DEMO_CONFIG)
|
207 |
+
logging.info(f"Reasoning guide expert model is {guide_kwargs['expert_model']}.")
|
208 |
+
|
209 |
|
210 |
with gr.Tab(label="Chatbot", visible=False) as chatbot_tab:
|
211 |
|
|
|
220 |
clear = gr.ClearButton([chat_input, chatbot])
|
221 |
gr.Examples([{"text": e, "files":[]} for e in EXAMPLES], chat_input)
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
# logic
|
224 |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input, conversation_id], [chatbot, chat_input, conversation_id])
|
225 |
bot_msg = chat_msg.then(
|
226 |
bot,
|
227 |
[
|
228 |
chatbot,
|
229 |
+
client_kwargs,
|
230 |
+
guide_kwargs,
|
|
|
|
|
|
|
231 |
conversation_id
|
232 |
],
|
233 |
chatbot,
|
backend/config.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Default client
|
4 |
+
INFERENCE_SERVER_URL = "https://api-inference.huggingface.co/models/{model_id}"
|
5 |
+
MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
|
6 |
+
CLIENT_MODEL_KWARGS = {
|
7 |
+
"max_tokens": 800,
|
8 |
+
"temperature": 0.6,
|
9 |
+
}
|
10 |
+
|
11 |
+
GUIDE_KWARGS = {
|
12 |
+
"expert_model": "HuggingFaceH4/zephyr-7b-beta",
|
13 |
+
# "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
14 |
+
"inference_server_url": "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta",
|
15 |
+
# "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-70B-Instruct",
|
16 |
+
"llm_backend": "HFChat",
|
17 |
+
"classifier_kwargs": {
|
18 |
+
"model_id": "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
|
19 |
+
"inference_server_url": "https://api-inference.huggingface.co/models/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
|
20 |
+
"batch_size": 8,
|
21 |
+
},
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
def process_config(config):
|
26 |
+
if "HF_TOKEN" not in os.environ:
|
27 |
+
raise ValueError("Please set the HF_TOKEN environment variable.")
|
28 |
+
client_kwargs = {}
|
29 |
+
if "client_llm" in config:
|
30 |
+
if "model_id" in config["client_llm"]:
|
31 |
+
client_kwargs["model_id"] = config["client_llm"]["model_id"]
|
32 |
+
else:
|
33 |
+
raise ValueError("config.yaml is missing client model_id.")
|
34 |
+
if "url" in config["client_llm"]:
|
35 |
+
client_kwargs["inference_server_url"] = config["client_llm"]["url"]
|
36 |
+
else:
|
37 |
+
raise ValueError("config.yaml is missing client url.")
|
38 |
+
client_kwargs["api_key"] = os.getenv("HF_TOKEN")
|
39 |
+
client_kwargs["llm_backend"] = "HFChat"
|
40 |
+
client_kwargs["temperature"] = CLIENT_MODEL_KWARGS["temperature"]
|
41 |
+
client_kwargs["max_tokens"] = CLIENT_MODEL_KWARGS["max_tokens"]
|
42 |
+
else:
|
43 |
+
raise ValueError("config.yaml is missing client_llm settings.")
|
44 |
+
|
45 |
+
guide_kwargs = {}
|
46 |
+
if "expert_llm" in config:
|
47 |
+
if "model_id" in config["expert_llm"]:
|
48 |
+
guide_kwargs["expert_model"] = config["expert_llm"]["model_id"]
|
49 |
+
else:
|
50 |
+
raise ValueError("config.yaml is missing expert model_id.")
|
51 |
+
if "url" in config["expert_llm"]:
|
52 |
+
guide_kwargs["inference_server_url"] = config["expert_llm"]["url"]
|
53 |
+
else:
|
54 |
+
raise ValueError("config.yaml is missing expert url.")
|
55 |
+
guide_kwargs["api_key"] = os.getenv("HF_TOKEN")
|
56 |
+
guide_kwargs["llm_backend"] = "HFChat"
|
57 |
+
else:
|
58 |
+
raise ValueError("config.yaml is missing expert_llm settings.")
|
59 |
+
|
60 |
+
if "classifier_llm" in config:
|
61 |
+
if "model_id" in config["classifier_llm"]:
|
62 |
+
guide_kwargs["classifier_kwargs"]["model_id"] = config["classifier_llm"]["model_id"]
|
63 |
+
else:
|
64 |
+
raise ValueError("config.yaml is missing classifier model_id.")
|
65 |
+
if "url" in config["classifier_llm"]:
|
66 |
+
guide_kwargs["classifier_kwargs"]["inference_server_url"] = config["classifier_llm"]["url"]
|
67 |
+
else:
|
68 |
+
raise ValueError("config.yaml is missing classifier url.")
|
69 |
+
if "batch_size" in config["classifier_llm"]:
|
70 |
+
guide_kwargs["classifier_kwargs"]["batch_size"] = config["classifier_llm"]["batch_size"]
|
71 |
+
else:
|
72 |
+
raise ValueError("config.yaml is missing classifier batch_size.")
|
73 |
+
guide_kwargs["classifier_kwargs"]["api_key"] = os.getenv("HF_TOKEN") # classifier api key
|
74 |
+
else:
|
75 |
+
raise ValueError("config.yaml is missing classifier_llm settings.")
|
76 |
+
|
77 |
+
return client_kwargs, guide_kwargs
|
78 |
+
|
config.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
client_llm:
|
2 |
+
url: "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
3 |
+
model_id: "HuggingFaceH4/zephyr-7b-beta"
|
4 |
+
expert_llm:
|
5 |
+
url: "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
6 |
+
model_id: "HuggingFaceH4/zephyr-7b-beta"
|
7 |
+
classifier_llm:
|
8 |
+
model_id: "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
|
9 |
+
inference_server_url: "https://api-inference.huggingface.co/models/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
|
10 |
+
batch_size: 8,
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
|
|
1 |
git+https://github.com/logikon-ai/[email protected]
|
|
|
1 |
+
pyyaml
|
2 |
git+https://github.com/logikon-ai/[email protected]
|