from qwen_agent.schema import RefMaterial from qwen_agent.utils.utils import get_keyword_by_llm, get_split_word class SimilaritySearch: def __init__(self): pass def run(self, line, query, max_token=4000, keyword_agent=None): """ Input: one line Output: the relative text """ content = line['raw'] if isinstance(content, str): content = content.split('\n') if not content: return RefMaterial(url=line['url'], text=[]).to_dict() tokens = [x['token'] for x in content] all_tokens = sum(tokens) if all_tokens <= max_token: print('use full ref: ', all_tokens) return { 'url': line['url'], 'text': [x['page_content'] for x in content] } wordlist = get_keyword_by_llm(query, keyword_agent) print('wordlist: ', wordlist) if not wordlist: return RefMaterial(url=line['url'], text=[]).to_dict() sims = [] for i, page in enumerate(content): sim = self.filter_section(page, wordlist) sims.append([i, sim]) sims.sort(key=lambda item: item[1], reverse=True) assert len(sims) > 0 res = [] max_sims = sims[0][1] if max_sims != 0: manul = 2 for i in range(min(manul, len(content))): res.append(content[i]['page_content']) max_token -= tokens[i] for i, x in enumerate(sims): if x[0] < manul: continue page = content[x[0]] print('select: ', x) if max_token < tokens[x[0]]: use_rate = (max_token / page['token']) * 0.2 res.append(page['page_content'] [:int(len(page['page_content']) * use_rate)]) break text = '' if isinstance(page, str): text = content[x[0]] elif isinstance(page, dict): text = page['page_content'] res.append(text) max_token -= tokens[x[0]] return RefMaterial(url=line['url'], text=res).to_dict() def filter_section(self, page, wordlist): text = page['page_content'] page_list = get_split_word(text) sim = self.jaccard_similarity(wordlist, page_list) return sim def jaccard_similarity(self, list1, list2): s1 = set(list1) s2 = set(list2) return len(s1.intersection(s2)) # avoid text length impact # return len(s1.intersection(s2)) / len(s1.union(s2)) # jaccard similarity