import copy from typing import Dict, List from qwen_agent.actions import GenKeyword from qwen_agent.memory.similarity_search import SimilaritySearch from qwen_agent.utils.tokenization_qwen import count_tokens # TODO: Design the interface. class Memory: def __init__(self, llm=None, stream=False): self.search_agent = SimilaritySearch() self.keyword_agent = GenKeyword(llm=llm, stream=stream) def get(self, query: str, records: list, max_token=4000) -> List[Dict]: # token counter backup new_records = [] for record in records: if not record['raw']: continue if 'token' not in record['raw'][0]['page_content']: tmp = [] for page in record['raw']: new_page = copy.deepcopy(page) new_page['token'] = count_tokens(page['page_content']) tmp.append(new_page) record['raw'] = tmp new_records.append(record) records = new_records single_max_token = int(max_token / len(records)) _ref_list = [] for record in records: now_ref_list = self.search_agent.run(record, query, single_max_token, self.keyword_agent) if now_ref_list['text']: _ref_list.append(now_ref_list) if not _ref_list: _ref_list = self.get_top(records, single_max_token=single_max_token) return _ref_list def get_top(self, records: list, single_max_token=4000): _ref_list = [] for record in records: now_token = 0 raw = record['raw'] tmp = {'url': record['url'], 'text': []} for page in raw: if (now_token + page['token']) <= single_max_token: tmp['text'].append(page['page_content']) now_token += page['token'] else: use_rate = ( (single_max_token - now_token) / page['token']) * 0.2 tmp['text'].append( page['page_content'] [:int(len(page['page_content']) * use_rate)]) break _ref_list.append(tmp) return _ref_list