output_dir = /home/ljw/sdc1/CRISPR_results seed = 63036 # device = cpu # cpu, cuda, if not specified, use cuda if available log = WARNING [dataset] owner = ljw20180420 data_name = SX_spcas9 # SX_spcas9, SX_spymac, SX_ispymac test_ratio = 0.05 validation_ratio = 0.05 [data loader] batch_size = 100 [optimizer] optimizer = adamw_torch # adamw_hf, adamw_torch, adamw_torch_fused, adamw_apex_fused, adamw_anyprecision, adafactor learning_rate = 0.001 [scheduler] scheduler = linear # linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup, inverse_sqrt, reduce_lr_on_plateau, cosine_with_min_lr, warmup_stable_decay num_epochs = 30.0 warmup_ratio = 0.05 [CRISPR transformer] hidden_size = 256 # model embedding dimension num_hidden_layers = 3 # number of EncoderLayer num_attention_heads = 4 # number of attention heads intermediate_size = 1024 # FeedForward intermediate dimension size hidden_dropout_prob = 0.1 # The dropout probability for all fully connected layers in the embeddings, encoder, and pooler attention_probs_dropout_prob = 0.1 # The dropout ratio for the attention probabilities [CRISPR diffuser] max_micro_homology = 7 MCMC_corrector_factor = [0., 0., 1.] unet_channels = [32, 64, 96, 64, 32] noise_scheduler = exp # linear, cosine, exp, uniform noise_timesteps = 20 cosine_factor = 0.008 exp_scale = 5.0 exp_base = 5.0 uniform_scale = 1.0 display_scale_factor = 0.1 [inDelphi] DELLEN_LIMIT = 60 [Lindel] Lindel_dlen = 30 Lindel_mh_len = 4 Lindel_reg_const = 0.01 Lindel_reg_mode = l2 [FOREcasT] FOREcasT_MAX_DEL_SIZE = 30 FOREcasT_reg_const = 0.01 FOREcasT_i1_reg_const =0.01 [inference] ref1len = 127 ref2len = 127