yl12053's picture
FC
46cfe25
from vencoder.encoder import SpeechEncoder
import torch
from vencoder.dphubert.model import wav2vec2_model
class DPHubert(SpeechEncoder):
def __init__(self,vec_path = "pretrain/DPHuBERT-sp0.75.pth",device=None):
print("load model(s) from {}".format(vec_path))
if device is None:
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
self.dev = torch.device(device)
ckpt = torch.load(vec_path)
self.hidden_dim = 768
self.model = wav2vec2_model(**ckpt["config"]).to(self.dev)
self.model.load_state_dict(ckpt["state_dict"], strict=False)
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats[None,:]
with torch.no_grad():
with torch.inference_mode():
units = self.model(feats)[0]
return units.transpose(1,2)