lixin4ever's picture
first commit (#1)
e52682b verified
r"""Weight Normalization from https://arxiv.org/abs/1602.07868."""
from torch.nn.parameter import Parameter, UninitializedParameter
from torch import norm_except_dim
from typing import Any, TypeVar
import warnings
from torch.nn.modules import Module
import torch
class WeightNorm:
name: str
dim: int
def __init__(self, name: str, dim: int) -> None:
if dim is None:
dim = -1
self.name = name
self.dim = dim
# TODO Make return type more specific
def compute_weight(self, module: Module) -> Any:
g = getattr(module, self.name + '_g')
v = getattr(module, self.name + '_v')
input_dtype = v.dtype
v = v.to(torch.float32)
reduce_dims = list(range(v.dim()))
reduce_dims.pop(self.dim)
variance = v.pow(2).sum(reduce_dims, keepdim=True)
v = v * torch.rsqrt(variance + 1e-6)
return g * v.to(input_dtype)
@staticmethod
def apply(module, name: str, dim: int) -> 'WeightNorm':
warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
for hook in module._forward_pre_hooks.values():
if isinstance(hook, WeightNorm) and hook.name == name:
raise RuntimeError(f"Cannot register two weight_norm hooks on the same parameter {name}")
if dim is None:
dim = -1
fn = WeightNorm(name, dim)
weight = getattr(module, name)
if isinstance(weight, UninitializedParameter):
raise ValueError(
'The module passed to `WeightNorm` can\'t have uninitialized parameters. '
'Make sure to run the dummy forward before applying weight normalization')
# remove w from parameter list
del module._parameters[name]
# add g and v as new parameters and express w as g/||v|| * v
module.register_parameter(name + '_g', Parameter(norm_except_dim(weight, 2, dim).data))
module.register_parameter(name + '_v', Parameter(weight.data))
setattr(module, name, fn.compute_weight(module))
# recompute weight before every forward()
module.register_forward_pre_hook(fn)
return fn
def remove(self, module: Module) -> None:
weight = self.compute_weight(module)
delattr(module, self.name)
del module._parameters[self.name + '_g']
del module._parameters[self.name + '_v']
setattr(module, self.name, Parameter(weight.data))
def __call__(self, module: Module, inputs: Any) -> None:
setattr(module, self.name, self.compute_weight(module))
T_module = TypeVar('T_module', bound=Module)
def weight_norm(module: T_module, name: str = 'weight', dim: int = 0) -> T_module:
r"""Apply weight normalization to a parameter in the given module.
.. math::
\mathbf{w} = g \dfrac{\mathbf{v}}{\|\mathbf{v}\|}
Weight normalization is a reparameterization that decouples the magnitude
of a weight tensor from its direction. This replaces the parameter specified
by :attr:`name` (e.g. ``'weight'``) with two parameters: one specifying the magnitude
(e.g. ``'weight_g'``) and one specifying the direction (e.g. ``'weight_v'``).
Weight normalization is implemented via a hook that recomputes the weight
tensor from the magnitude and direction before every :meth:`~Module.forward`
call.
By default, with ``dim=0``, the norm is computed independently per output
channel/plane. To compute a norm over the entire weight tensor, use
``dim=None``.
See https://arxiv.org/abs/1602.07868
.. warning::
This function is deprecated. Use :func:`torch.nn.utils.parametrizations.weight_norm`
which uses the modern parametrization API. The new ``weight_norm`` is compatible
with ``state_dict`` generated from old ``weight_norm``.
Migration guide:
* The magnitude (``weight_g``) and direction (``weight_v``) are now expressed
as ``parametrizations.weight.original0`` and ``parametrizations.weight.original1``
respectively. If this is bothering you, please comment on
https://github.com/pytorch/pytorch/issues/102999
* To remove the weight normalization reparametrization, use
:func:`torch.nn.utils.parametrize.remove_parametrizations`.
* The weight is no longer recomputed once at module forward; instead, it will
be recomputed on every access. To restore the old behavior, use
:func:`torch.nn.utils.parametrize.cached` before invoking the module
in question.
Args:
module (Module): containing module
name (str, optional): name of weight parameter
dim (int, optional): dimension over which to compute the norm
Returns:
The original module with the weight norm hook
Example::
>>> m = weight_norm(nn.Linear(20, 40), name='weight')
>>> m
Linear(in_features=20, out_features=40, bias=True)
>>> m.weight_g.size()
torch.Size([40, 1])
>>> m.weight_v.size()
torch.Size([40, 20])
"""
WeightNorm.apply(module, name, dim)
return module