import os import numpy as np import torch from PIL import Image import time from segment_anything import sam_model_registry, SamPredictor def sam_init(device_id=0): sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpt/sam_vit_h_4b8939.pth") model_type = "vit_h" device = "cuda:{}".format(device_id) if torch.cuda.is_available() else "cpu" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device) predictor = SamPredictor(sam) return predictor def sam_out_nosave(predictor, input_image, ): image = np.asarray(input_image) h, w, _ = image.shape bbox = np.array([0, 0, h, w]) start_time = time.time() predictor.set_image(image) h, w, _ = image.shape input_point = np.array([[h//2, w//2]]) input_label = np.array([1]) masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=True, ) masks_bbox, scores_bbox, logits_bbox = predictor.predict( box=bbox, multimask_output=True ) print(f"SAM Time: {time.time() - start_time:.3f}s") opt_idx = np.argmax(scores) mask = masks[opt_idx] out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) out_image[:, :, :3] = image out_image_bbox = out_image.copy() out_image[:, :, 3] = mask.astype(np.uint8) * 255 out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 # np.argmax(scores_bbox) torch.cuda.empty_cache() return Image.fromarray(out_image_bbox, mode='RGBA')