from functools import partial from PIL import Image import numpy as np import gradio as gr import torch import os import fire from omegaconf import OmegaConf from ldm.util import add_margin, instantiate_from_config from sam_utils import sam_init, sam_out_nosave import torch print(f"Is CUDA available: {torch.cuda.is_available()}") # True print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") # Tesla T4 _TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image''' _DESCRIPTION = '''
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss 1. Upload the image. 2. Predict the mask for the foreground object. 3. Crop the foreground object. 4. Generate multiview images. ''' _USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given." _USER_GUIDE1 = "Step1: Please select a crop size using the glider." _USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button." _USER_GUIDE3 = "Generated multiview images are shown below!" deployed = True def resize_inputs(image_input, crop_size): alpha_np = np.asarray(image_input)[:, :, 3] coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)] min_x, min_y = np.min(coords, 0) max_x, max_y = np.max(coords, 0) ref_img_ = image_input.crop((min_x, min_y, max_x, max_y)) h, w = ref_img_.height, ref_img_.width scale = crop_size / max(h, w) h_, w_ = int(scale * h), int(scale * w) ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC) results = add_margin(ref_img_, size=256) return results def generate(model, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input): seed=int(seed) torch.random.manual_seed(seed) np.random.seed(seed) # prepare data image_input = np.asarray(image_input) image_input = image_input.astype(np.float32) / 255.0 alpha_values = image_input[:,:, 3:] image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background image_input = image_input[:, :, :3] * 2.0 - 1.0 image_input = torch.from_numpy(image_input.astype(np.float32)) elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32)) data = {"input_image": image_input, "input_elevation": elevation_input} for k, v in data.items(): if deployed: data[k] = v.unsqueeze(0).cuda() else: data[k] = v.unsqueeze(0) data[k] = torch.repeat_interleave(data[k], sample_num, dim=0) if deployed: x_sample = model.sample(data, cfg_scale, batch_view_num) else: x_sample = torch.zeros(sample_num, 16, 3, 256, 256) B, N, _, H, W = x_sample.shape x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5 x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255 x_sample = x_sample.astype(np.uint8) results = [] for bi in range(B): results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1)) results = np.concatenate(results, 0) return Image.fromarray(results) def white_background(img): img = np.asarray(img,np.float32)/255 rgb = img[:,:,3:] * img[:,:,:3] + 1 - img[:,:,3:] rgb = (rgb*255).astype(np.uint8) return Image.fromarray(rgb) def sam_predict(predictor, raw_im): raw_im = np.asarray(raw_im) raw_rgb = white_background(raw_im) h, w = raw_im.raw_rgb, raw_im.raw_rgb raw_rgb = add_margin(raw_rgb, color=255, size=max(h, w)) raw_rgb.thumbnail([512, 512], Image.Resampling.LANCZOS) image_sam = sam_out_nosave(predictor, raw_rgb.convert("RGB")) image_sam = np.asarray(image_sam) out_mask = image_sam[:,:,3:]>0 out_rgb = image_sam[:,:,:3] * out_mask + 1 - out_mask out_mask = out_mask.astype(np.uint8) * 255 out_img = np.concatenate([out_rgb, out_mask], 2) image_sam = Image.fromarray(out_img, mode='RGBA') torch.cuda.empty_cache() return image_sam def run_demo(): # device = f"cuda:0" if torch.cuda.is_available() else "cpu" # models = None # init_model(device, os.path.join(code_dir, ckpt)) cfg = 'configs/syncdreamer.yaml' ckpt = 'ckpt/syncdreamer-pretrain.ckpt' config = OmegaConf.load(cfg) # model = None if deployed: model = instantiate_from_config(config.model) print(f'loading model from {ckpt} ...') ckpt = torch.load(ckpt,map_location='cpu') model.load_state_dict(ckpt['state_dict'], strict=True) model = model.cuda().eval() del ckpt else: model = None # init sam model mask_predictor = sam_init() # with open('instructions_12345.md', 'r') as f: # article = f.read() # NOTE: Examples must match inputs example_folder = os.path.join(os.path.dirname(__file__), 'hf_demo', 'examples') example_fns = os.listdir(example_folder) example_fns.sort() examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')] # Compose demo layout & data flow. with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) # with gr.Column(scale=0): # gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button') gr.Markdown(_DESCRIPTION) with gr.Row(variant='panel'): with gr.Column(scale=1): image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True) guide_text = gr.Markdown(_USER_GUIDE0, visible=True) gr.Examples( examples=examples_full, # NOTE: elements must match inputs list! inputs=[image_block], outputs=[image_block], cache_examples=False, label='Examples (click one of the images below to start)', examples_per_page=40 ) with gr.Column(scale=1): sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False) crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True) crop_btn = gr.Button('Crop the image', variant='primary', interactive=True) fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False) with gr.Column(scale=1): input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False) elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True) cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True) sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=True, info='How many instance (16 images per instance)') batch_view_num = gr.Slider(1, 16, 16, step=1, label='Batch num', interactive=True) seed = gr.Number(6033, label='Random seed', interactive=True) run_btn = gr.Button('Run Generation', variant='primary', interactive=True) fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False) output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False) update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT) image_block.change(fn=partial(sam_predict, mask_predictor), inputs=[image_block], outputs=[sam_block], queue=False)\ .success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False) crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\ .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False) crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\ .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False) run_btn.click(partial(generate, model), inputs=[batch_view_num, sample_num, cfg_scale, seed, input_block, elevation], outputs=[output_block], queue=False)\ .success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False) demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD']) if __name__=="__main__": fire.Fire(run_demo)