name="style_video_generation" config="configs/inference_video_320_512.yaml" ckpt="checkpoints/videocrafter_t2v_320_512/model.ckpt" adapter_ckpt="checkpoints/stylecrafter/adapter_v1.pth" temporal_ckpt="checkpoints/stylecrafter/temporal_v1.pth" prompt_dir="eval_data" filename="eval_video_gen.json" res_dir="output" seed=123 n_samples=1 use_ddp=0 # set use_ddp=1 if you want to use multi GPU # export CUDA_VISIBLE_DEVICES=0, 1 if [ $use_ddp == 0 ]; then python3 scripts/evaluation/style_inference.py \ --out_type 'video' \ --adapter_ckpt $adapter_ckpt \ --temporal_ckpt $temporal_ckpt \ --seed $seed \ --ckpt_path $ckpt \ --base $config \ --savedir $res_dir/$name \ --n_samples $n_samples \ --bs 1 --height 320 --width 512 \ --unconditional_guidance_scale 15.0 \ --unconditional_guidance_scale_style 7.5 \ --ddim_steps 50 \ --ddim_eta 1.0 \ --prompt_dir $prompt_dir \ --filename $filename fi if [ $use_ddp == 1 ]; then python3 -m torch.distributed.launch \ --nproc_per_node=$HOST_GPU_NUM --nnodes=$HOST_NUM --master_addr=$CHIEF_IP --master_port=23466 --node_rank=$INDEX \ scripts/evaluation/ddp_wrapper.py \ --module 'style_inference' \ --out_type 'video' \ --adapter_ckpt $adapter_ckpt \ --temporal_ckpt $temporal_ckpt \ --seed $seed \ --ckpt_path $ckpt \ --base $config \ --savedir $res_dir/$name \ --n_samples $n_samples \ --bs 1 --height 320 --width 512 \ --unconditional_guidance_scale 15.0 \ --unconditional_guidance_scale_style 7.5 \ --ddim_steps 50 \ --ddim_eta 1.0 \ --prompt_dir $prompt_dir \ --filename $filename fi