lithish2602 commited on
Commit
20d2b70
·
verified ·
1 Parent(s): 367890d

Upload OCRFINAL.py

Browse files
Files changed (1) hide show
  1. OCRFINAL.py +71 -0
OCRFINAL.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import uuid
4
+ import shutil
5
+ import re
6
+ from transformers import AutoModel, AutoTokenizer
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
9
+ model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True)
10
+ model = model.eval()
11
+
12
+ UPLOAD_FOLDER = "./uploads"
13
+ RESULTS_FOLDER = "./results"
14
+
15
+ for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
16
+ if not os.path.exists(folder):
17
+ os.makedirs(folder)
18
+
19
+
20
+ def run_GOT(image, search_term):
21
+ unique_id = str(uuid.uuid4())
22
+ image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
23
+
24
+
25
+ shutil.copy(image, image_path)
26
+
27
+ try:
28
+
29
+ res = model.chat(tokenizer, image_path, ocr_type='ocr')
30
+
31
+ highlighted_text = highlight_text(res, search_term)
32
+
33
+ return highlighted_text, None
34
+ except Exception as e:
35
+ return f"Error: {str(e)}", None
36
+ finally:
37
+ if os.path.exists(image_path):
38
+ os.remove(image_path)
39
+
40
+
41
+ def highlight_text(text, search_term):
42
+ if not search_term:
43
+ return text
44
+ pattern = re.compile(re.escape(search_term), re.IGNORECASE)
45
+ return pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', text)
46
+
47
+ title_html = """
48
+ <h2> <span class="gradient-text" id="text">General OCR Theory (GOT)</span>: Multi-Language OCR HINDI AND ENGLISH</h2>
49
+ """
50
+
51
+ with gr.Blocks() as demo:
52
+ gr.HTML(title_html)
53
+ gr.Markdown("""
54
+ ### Instructions
55
+ Upload your respective image below and click "Submit" to extract text in both English and Hindi. If you want you can select the word to be highlighted.
56
+ """)
57
+
58
+ with gr.Row():
59
+ with gr.Column():
60
+ image_input = gr.Image(type="filepath", label="Upload your image")
61
+ search_input = gr.Textbox(label="Enter a word to search", placeholder="Search term")
62
+ submit_button = gr.Button("Submit")
63
+
64
+ with gr.Column():
65
+ ocr_result = gr.HTML(label="Extracted Text:")
66
+
67
+
68
+ submit_button.click(run_GOT, inputs=[image_input, search_input], outputs=[ocr_result])
69
+
70
+ if __name__ == "__main__":
71
+ demo.launch()