linoyts HF Staff commited on
Commit
8b940e3
·
verified ·
1 Parent(s): e3a91f4

Create pipeline_qwenimage_edit_inpaint.py

Browse files
qwenimage/pipeline_qwenimage_edit_inpaint.py ADDED
@@ -0,0 +1,1106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import math
17
+ from typing import Any, Callable, Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
23
+
24
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
25
+ from diffusers.loaders import QwenImageLoraLoaderMixin
26
+ from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
27
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
28
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
29
+ from diffusers.utils.torch_utils import randn_tensor
30
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
31
+ from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```py
47
+ >>> import torch
48
+ >>> from PIL import Image
49
+ >>> from diffusers import QwenImageEditInpaintPipeline
50
+ >>> from diffusers.utils import load_image
51
+
52
+ >>> pipe = QwenImageEditInpaintPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.bfloat16)
53
+ >>> pipe.to("cuda")
54
+ >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
55
+
56
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
57
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
58
+ >>> source = load_image(img_url)
59
+ >>> mask = load_image(mask_url)
60
+ >>> image = pipe(
61
+ ... prompt=prompt, negative_prompt=" ", image=source, mask_image=mask, strength=1.0, num_inference_steps=50
62
+ ... ).images[0]
63
+ >>> image.save("qwenimage_inpainting.png")
64
+ ```
65
+ """
66
+
67
+
68
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
69
+ def calculate_shift(
70
+ image_seq_len,
71
+ base_seq_len: int = 256,
72
+ max_seq_len: int = 4096,
73
+ base_shift: float = 0.5,
74
+ max_shift: float = 1.15,
75
+ ):
76
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
77
+ b = base_shift - m * base_seq_len
78
+ mu = image_seq_len * m + b
79
+ return mu
80
+
81
+
82
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
83
+ def retrieve_timesteps(
84
+ scheduler,
85
+ num_inference_steps: Optional[int] = None,
86
+ device: Optional[Union[str, torch.device]] = None,
87
+ timesteps: Optional[List[int]] = None,
88
+ sigmas: Optional[List[float]] = None,
89
+ **kwargs,
90
+ ):
91
+ r"""
92
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
93
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
94
+
95
+ Args:
96
+ scheduler (`SchedulerMixin`):
97
+ The scheduler to get timesteps from.
98
+ num_inference_steps (`int`):
99
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
100
+ must be `None`.
101
+ device (`str` or `torch.device`, *optional*):
102
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
103
+ timesteps (`List[int]`, *optional*):
104
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
105
+ `num_inference_steps` and `sigmas` must be `None`.
106
+ sigmas (`List[float]`, *optional*):
107
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
108
+ `num_inference_steps` and `timesteps` must be `None`.
109
+
110
+ Returns:
111
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
112
+ second element is the number of inference steps.
113
+ """
114
+ if timesteps is not None and sigmas is not None:
115
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
116
+ if timesteps is not None:
117
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
118
+ if not accepts_timesteps:
119
+ raise ValueError(
120
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
121
+ f" timestep schedules. Please check whether you are using the correct scheduler."
122
+ )
123
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
124
+ timesteps = scheduler.timesteps
125
+ num_inference_steps = len(timesteps)
126
+ elif sigmas is not None:
127
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
128
+ if not accept_sigmas:
129
+ raise ValueError(
130
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
131
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
132
+ )
133
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
134
+ timesteps = scheduler.timesteps
135
+ num_inference_steps = len(timesteps)
136
+ else:
137
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
138
+ timesteps = scheduler.timesteps
139
+ return timesteps, num_inference_steps
140
+
141
+
142
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
143
+ def retrieve_latents(
144
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
145
+ ):
146
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
147
+ return encoder_output.latent_dist.sample(generator)
148
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
149
+ return encoder_output.latent_dist.mode()
150
+ elif hasattr(encoder_output, "latents"):
151
+ return encoder_output.latents
152
+ else:
153
+ raise AttributeError("Could not access latents of provided encoder_output")
154
+
155
+
156
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.calculate_dimensions
157
+ def calculate_dimensions(target_area, ratio):
158
+ width = math.sqrt(target_area * ratio)
159
+ height = width / ratio
160
+
161
+ width = round(width / 32) * 32
162
+ height = round(height / 32) * 32
163
+
164
+ return width, height, None
165
+
166
+
167
+ class QwenImageEditInpaintPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
168
+ r"""
169
+ The Qwen-Image-Edit pipeline for image editing.
170
+
171
+ Args:
172
+ transformer ([`QwenImageTransformer2DModel`]):
173
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
174
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
175
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
176
+ vae ([`AutoencoderKL`]):
177
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
178
+ text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
179
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
180
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
181
+ tokenizer (`QwenTokenizer`):
182
+ Tokenizer of class
183
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
184
+ """
185
+
186
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
187
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
188
+
189
+ def __init__(
190
+ self,
191
+ scheduler: FlowMatchEulerDiscreteScheduler,
192
+ vae: AutoencoderKLQwenImage,
193
+ text_encoder: Qwen2_5_VLForConditionalGeneration,
194
+ tokenizer: Qwen2Tokenizer,
195
+ processor: Qwen2VLProcessor,
196
+ transformer: QwenImageTransformer2DModel,
197
+ ):
198
+ super().__init__()
199
+
200
+ self.register_modules(
201
+ vae=vae,
202
+ text_encoder=text_encoder,
203
+ tokenizer=tokenizer,
204
+ processor=processor,
205
+ transformer=transformer,
206
+ scheduler=scheduler,
207
+ )
208
+ self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
209
+ self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
210
+ # QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
211
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
212
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
213
+ self.mask_processor = VaeImageProcessor(
214
+ vae_scale_factor=self.vae_scale_factor * 2,
215
+ vae_latent_channels=self.latent_channels,
216
+ do_normalize=False,
217
+ do_binarize=True,
218
+ do_convert_grayscale=True,
219
+ )
220
+ self.vl_processor = processor
221
+ self.tokenizer_max_length = 1024
222
+
223
+ self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
224
+ self.prompt_template_encode_start_idx = 64
225
+ self.default_sample_size = 128
226
+
227
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
228
+ def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
229
+ bool_mask = mask.bool()
230
+ valid_lengths = bool_mask.sum(dim=1)
231
+ selected = hidden_states[bool_mask]
232
+ split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
233
+
234
+ return split_result
235
+
236
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline._get_qwen_prompt_embeds
237
+ def _get_qwen_prompt_embeds(
238
+ self,
239
+ prompt: Union[str, List[str]] = None,
240
+ image: Optional[torch.Tensor] = None,
241
+ device: Optional[torch.device] = None,
242
+ dtype: Optional[torch.dtype] = None,
243
+ ):
244
+ device = device or self._execution_device
245
+ dtype = dtype or self.text_encoder.dtype
246
+
247
+ prompt = [prompt] if isinstance(prompt, str) else prompt
248
+
249
+ template = self.prompt_template_encode
250
+ drop_idx = self.prompt_template_encode_start_idx
251
+ txt = [template.format(e) for e in prompt]
252
+
253
+ model_inputs = self.processor(
254
+ text=txt,
255
+ images=image,
256
+ padding=True,
257
+ return_tensors="pt",
258
+ ).to(device)
259
+
260
+ outputs = self.text_encoder(
261
+ input_ids=model_inputs.input_ids,
262
+ attention_mask=model_inputs.attention_mask,
263
+ pixel_values=model_inputs.pixel_values,
264
+ image_grid_thw=model_inputs.image_grid_thw,
265
+ output_hidden_states=True,
266
+ )
267
+
268
+ hidden_states = outputs.hidden_states[-1]
269
+ split_hidden_states = self._extract_masked_hidden(hidden_states, model_inputs.attention_mask)
270
+ split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
271
+ attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
272
+ max_seq_len = max([e.size(0) for e in split_hidden_states])
273
+ prompt_embeds = torch.stack(
274
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
275
+ )
276
+ encoder_attention_mask = torch.stack(
277
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
278
+ )
279
+
280
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
281
+
282
+ return prompt_embeds, encoder_attention_mask
283
+
284
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline.encode_prompt
285
+ def encode_prompt(
286
+ self,
287
+ prompt: Union[str, List[str]],
288
+ image: Optional[torch.Tensor] = None,
289
+ device: Optional[torch.device] = None,
290
+ num_images_per_prompt: int = 1,
291
+ prompt_embeds: Optional[torch.Tensor] = None,
292
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
293
+ max_sequence_length: int = 1024,
294
+ ):
295
+ r"""
296
+
297
+ Args:
298
+ prompt (`str` or `List[str]`, *optional*):
299
+ prompt to be encoded
300
+ image (`torch.Tensor`, *optional*):
301
+ image to be encoded
302
+ device: (`torch.device`):
303
+ torch device
304
+ num_images_per_prompt (`int`):
305
+ number of images that should be generated per prompt
306
+ prompt_embeds (`torch.Tensor`, *optional*):
307
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
308
+ provided, text embeddings will be generated from `prompt` input argument.
309
+ """
310
+ device = device or self._execution_device
311
+
312
+ prompt = [prompt] if isinstance(prompt, str) else prompt
313
+ batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
314
+
315
+ if prompt_embeds is None:
316
+ prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, image, device)
317
+
318
+ _, seq_len, _ = prompt_embeds.shape
319
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
320
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
321
+ prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
322
+ prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
323
+
324
+ return prompt_embeds, prompt_embeds_mask
325
+
326
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_inpaint.QwenImageInpaintPipeline.check_inputs
327
+ def check_inputs(
328
+ self,
329
+ prompt,
330
+ image,
331
+ mask_image,
332
+ strength,
333
+ height,
334
+ width,
335
+ output_type,
336
+ negative_prompt=None,
337
+ prompt_embeds=None,
338
+ negative_prompt_embeds=None,
339
+ prompt_embeds_mask=None,
340
+ negative_prompt_embeds_mask=None,
341
+ callback_on_step_end_tensor_inputs=None,
342
+ padding_mask_crop=None,
343
+ max_sequence_length=None,
344
+ ):
345
+ if strength < 0 or strength > 1:
346
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
347
+
348
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
349
+ logger.warning(
350
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
351
+ )
352
+
353
+ if callback_on_step_end_tensor_inputs is not None and not all(
354
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
355
+ ):
356
+ raise ValueError(
357
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
358
+ )
359
+
360
+ if prompt is not None and prompt_embeds is not None:
361
+ raise ValueError(
362
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
363
+ " only forward one of the two."
364
+ )
365
+ elif prompt is None and prompt_embeds is None:
366
+ raise ValueError(
367
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
368
+ )
369
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
370
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
371
+
372
+ if negative_prompt is not None and negative_prompt_embeds is not None:
373
+ raise ValueError(
374
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
375
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
376
+ )
377
+
378
+ if prompt_embeds is not None and prompt_embeds_mask is None:
379
+ raise ValueError(
380
+ "If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
381
+ )
382
+ if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
383
+ raise ValueError(
384
+ "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
385
+ )
386
+ if padding_mask_crop is not None:
387
+ if not isinstance(image, PIL.Image.Image):
388
+ raise ValueError(
389
+ f"The image should be a PIL image when inpainting mask crop, but is of type {type(image)}."
390
+ )
391
+ if not isinstance(mask_image, PIL.Image.Image):
392
+ raise ValueError(
393
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
394
+ f" {type(mask_image)}."
395
+ )
396
+ if output_type != "pil":
397
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is {output_type}.")
398
+
399
+ if max_sequence_length is not None and max_sequence_length > 1024:
400
+ raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
401
+
402
+ @staticmethod
403
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
404
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
405
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
406
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
407
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
408
+
409
+ return latents
410
+
411
+ @staticmethod
412
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
413
+ def _unpack_latents(latents, height, width, vae_scale_factor):
414
+ batch_size, num_patches, channels = latents.shape
415
+
416
+ # VAE applies 8x compression on images but we must also account for packing which requires
417
+ # latent height and width to be divisible by 2.
418
+ height = 2 * (int(height) // (vae_scale_factor * 2))
419
+ width = 2 * (int(width) // (vae_scale_factor * 2))
420
+
421
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
422
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
423
+
424
+ latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
425
+
426
+ return latents
427
+
428
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_img2img.QwenImageImg2ImgPipeline._encode_vae_image
429
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
430
+ if isinstance(generator, list):
431
+ image_latents = [
432
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
433
+ for i in range(image.shape[0])
434
+ ]
435
+ image_latents = torch.cat(image_latents, dim=0)
436
+ else:
437
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
438
+
439
+ latents_mean = (
440
+ torch.tensor(self.vae.config.latents_mean)
441
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
442
+ .to(image_latents.device, image_latents.dtype)
443
+ )
444
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
445
+ image_latents.device, image_latents.dtype
446
+ )
447
+
448
+ image_latents = (image_latents - latents_mean) * latents_std
449
+
450
+ return image_latents
451
+
452
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
453
+ def get_timesteps(self, num_inference_steps, strength, device):
454
+ # get the original timestep using init_timestep
455
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
456
+
457
+ t_start = int(max(num_inference_steps - init_timestep, 0))
458
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
459
+ if hasattr(self.scheduler, "set_begin_index"):
460
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
461
+
462
+ return timesteps, num_inference_steps - t_start
463
+
464
+ def enable_vae_slicing(self):
465
+ r"""
466
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
467
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
468
+ """
469
+ self.vae.enable_slicing()
470
+
471
+ def disable_vae_slicing(self):
472
+ r"""
473
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
474
+ computing decoding in one step.
475
+ """
476
+ self.vae.disable_slicing()
477
+
478
+ def enable_vae_tiling(self):
479
+ r"""
480
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
481
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
482
+ processing larger images.
483
+ """
484
+ self.vae.enable_tiling()
485
+
486
+ def disable_vae_tiling(self):
487
+ r"""
488
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
489
+ computing decoding in one step.
490
+ """
491
+ self.vae.disable_tiling()
492
+
493
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_inpaint.QwenImageInpaintPipeline.prepare_latents
494
+ def prepare_latents(
495
+ self,
496
+ image,
497
+ timestep,
498
+ batch_size,
499
+ num_channels_latents,
500
+ height,
501
+ width,
502
+ dtype,
503
+ device,
504
+ generator,
505
+ latents=None,
506
+ ):
507
+ if isinstance(generator, list) and len(generator) != batch_size:
508
+ raise ValueError(
509
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
510
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
511
+ )
512
+ # VAE applies 8x compression on images but we must also account for packing which requires
513
+ # latent height and width to be divisible by 2.
514
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
515
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
516
+
517
+ shape = (batch_size, 1, num_channels_latents, height, width)
518
+
519
+ # If image is [B,C,H,W] -> add T=1. If it's already [B,C,T,H,W], leave it.
520
+ if image.dim() == 4:
521
+ image = image.unsqueeze(2)
522
+ elif image.dim() != 5:
523
+ raise ValueError(f"Expected image dims 4 or 5, got {image.dim()}.")
524
+
525
+ if latents is not None:
526
+ return latents.to(device=device, dtype=dtype)
527
+
528
+ image = image.to(device=device, dtype=dtype)
529
+ if image.shape[1] != self.latent_channels:
530
+ image_latents = self._encode_vae_image(image=image, generator=generator) # [B,z,1,H',W']
531
+ else:
532
+ image_latents = image
533
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
534
+ # expand init_latents for batch_size
535
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
536
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
537
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
538
+ raise ValueError(
539
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
540
+ )
541
+ else:
542
+ image_latents = torch.cat([image_latents], dim=0)
543
+
544
+ image_latents = image_latents.transpose(1, 2) # [B,1,z,H',W']
545
+
546
+ if latents is None:
547
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
548
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
549
+ else:
550
+ noise = latents.to(device)
551
+ latents = noise
552
+
553
+ noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
554
+ image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
555
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
556
+
557
+ return latents, noise, image_latents
558
+
559
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_inpaint.QwenImageInpaintPipeline.prepare_mask_latents
560
+ def prepare_mask_latents(
561
+ self,
562
+ mask,
563
+ masked_image,
564
+ batch_size,
565
+ num_channels_latents,
566
+ num_images_per_prompt,
567
+ height,
568
+ width,
569
+ dtype,
570
+ device,
571
+ generator,
572
+ ):
573
+ # VAE applies 8x compression on images but we must also account for packing which requires
574
+ # latent height and width to be divisible by 2.
575
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
576
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
577
+ # resize the mask to latents shape as we concatenate the mask to the latents
578
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
579
+ # and half precision
580
+ mask = torch.nn.functional.interpolate(mask, size=(height, width))
581
+ mask = mask.to(device=device, dtype=dtype)
582
+
583
+ batch_size = batch_size * num_images_per_prompt
584
+
585
+ if masked_image.dim() == 4:
586
+ masked_image = masked_image.unsqueeze(2)
587
+ elif masked_image.dim() != 5:
588
+ raise ValueError(f"Expected image dims 4 or 5, got {masked_image.dim()}.")
589
+
590
+ masked_image = masked_image.to(device=device, dtype=dtype)
591
+
592
+ if masked_image.shape[1] == self.latent_channels:
593
+ masked_image_latents = masked_image
594
+ else:
595
+ masked_image_latents = self._encode_vae_image(image=masked_image, generator=generator)
596
+
597
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
598
+ if mask.shape[0] < batch_size:
599
+ if not batch_size % mask.shape[0] == 0:
600
+ raise ValueError(
601
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
602
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
603
+ " of masks that you pass is divisible by the total requested batch size."
604
+ )
605
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
606
+ if masked_image_latents.shape[0] < batch_size:
607
+ if not batch_size % masked_image_latents.shape[0] == 0:
608
+ raise ValueError(
609
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
610
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
611
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
612
+ )
613
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1, 1)
614
+
615
+ # aligning device to prevent device errors when concating it with the latent model input
616
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
617
+
618
+ masked_image_latents = self._pack_latents(
619
+ masked_image_latents,
620
+ batch_size,
621
+ num_channels_latents,
622
+ height,
623
+ width,
624
+ )
625
+ mask = self._pack_latents(
626
+ mask.repeat(1, num_channels_latents, 1, 1),
627
+ batch_size,
628
+ num_channels_latents,
629
+ height,
630
+ width,
631
+ )
632
+
633
+ return mask, masked_image_latents
634
+
635
+ @property
636
+ def guidance_scale(self):
637
+ return self._guidance_scale
638
+
639
+ @property
640
+ def attention_kwargs(self):
641
+ return self._attention_kwargs
642
+
643
+ @property
644
+ def num_timesteps(self):
645
+ return self._num_timesteps
646
+
647
+ @property
648
+ def current_timestep(self):
649
+ return self._current_timestep
650
+
651
+ @property
652
+ def interrupt(self):
653
+ return self._interrupt
654
+
655
+ @torch.no_grad()
656
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
657
+ def __call__(
658
+ self,
659
+ image: Optional[PipelineImageInput] = None,
660
+ prompt: Union[str, List[str]] = None,
661
+ negative_prompt: Union[str, List[str]] = None,
662
+ mask_image: PipelineImageInput = None,
663
+ masked_image_latents: PipelineImageInput = None,
664
+ true_cfg_scale: float = 4.0,
665
+ height: Optional[int] = None,
666
+ width: Optional[int] = None,
667
+ padding_mask_crop: Optional[int] = None,
668
+ strength: float = 0.6,
669
+ num_inference_steps: int = 50,
670
+ sigmas: Optional[List[float]] = None,
671
+ guidance_scale: Optional[float] = None,
672
+ num_images_per_prompt: int = 1,
673
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
674
+ latents: Optional[torch.Tensor] = None,
675
+ prompt_embeds: Optional[torch.Tensor] = None,
676
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
677
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
678
+ negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
679
+ output_type: Optional[str] = "pil",
680
+ return_dict: bool = True,
681
+ attention_kwargs: Optional[Dict[str, Any]] = None,
682
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
683
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
684
+ max_sequence_length: int = 512,
685
+ ):
686
+ r"""
687
+ Function invoked when calling the pipeline for generation.
688
+
689
+ Args:
690
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
691
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
692
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
693
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
694
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
695
+ latents as `image`, but if passing latents directly it is not encoded again.
696
+ prompt (`str` or `List[str]`, *optional*):
697
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
698
+ instead.
699
+ negative_prompt (`str` or `List[str]`, *optional*):
700
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
701
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
702
+ not greater than `1`).
703
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
704
+ true_cfg_scale (`float`, *optional*, defaults to 1.0): Guidance scale as defined in [Classifier-Free
705
+ Diffusion Guidance](https://huggingface.co/papers/2207.12598). `true_cfg_scale` is defined as `w` of
706
+ equation 2. of [Imagen Paper](https://huggingface.co/papers/2205.11487). Classifier-free guidance is
707
+ enabled by setting `true_cfg_scale > 1` and a provided `negative_prompt`. Higher guidance scale
708
+ encourages to generate images that are closely linked to the text `prompt`, usually at the expense of
709
+ lower image quality.
710
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
711
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
712
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
713
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
714
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
715
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
716
+ 1)`, or `(H, W)`.
717
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
718
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
719
+ latents tensor will ge generated by `mask_image`.
720
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
721
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
722
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
723
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
724
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
725
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
726
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
727
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
728
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
729
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
730
+ the image is large and contain information irrelevant for inpainting, such as background.
731
+ strength (`float`, *optional*, defaults to 1.0):
732
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
733
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
734
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
735
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
736
+ essentially ignores `image`.
737
+ num_inference_steps (`int`, *optional*, defaults to 50):
738
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
739
+ expense of slower inference.
740
+ sigmas (`List[float]`, *optional*):
741
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
742
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
743
+ will be used.
744
+ guidance_scale (`float`, *optional*, defaults to None):
745
+ A guidance scale value for guidance distilled models. Unlike the traditional classifier-free guidance
746
+ where the guidance scale is applied during inference through noise prediction rescaling, guidance
747
+ distilled models take the guidance scale directly as an input parameter during forward pass. Guidance
748
+ scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images
749
+ that are closely linked to the text `prompt`, usually at the expense of lower image quality. This
750
+ parameter in the pipeline is there to support future guidance-distilled models when they come up. It is
751
+ ignored when not using guidance distilled models. To enable traditional classifier-free guidance,
752
+ please pass `true_cfg_scale > 1.0` and `negative_prompt` (even an empty negative prompt like " " should
753
+ enable classifier-free guidance computations).
754
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
755
+ The number of images to generate per prompt.
756
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
757
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
758
+ to make generation deterministic.
759
+ latents (`torch.Tensor`, *optional*):
760
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
761
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
762
+ tensor will be generated by sampling using the supplied random `generator`.
763
+ prompt_embeds (`torch.Tensor`, *optional*):
764
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
765
+ provided, text embeddings will be generated from `prompt` input argument.
766
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
767
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
768
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
769
+ argument.
770
+ output_type (`str`, *optional*, defaults to `"pil"`):
771
+ The output format of the generate image. Choose between
772
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
773
+ return_dict (`bool`, *optional*, defaults to `True`):
774
+ Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
775
+ attention_kwargs (`dict`, *optional*):
776
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
777
+ `self.processor` in
778
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
779
+ callback_on_step_end (`Callable`, *optional*):
780
+ A function that calls at the end of each denoising steps during the inference. The function is called
781
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
782
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
783
+ `callback_on_step_end_tensor_inputs`.
784
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
785
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
786
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
787
+ `._callback_tensor_inputs` attribute of your pipeline class.
788
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
789
+
790
+ Examples:
791
+
792
+ Returns:
793
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
794
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
795
+ returning a tuple, the first element is a list with the generated images.
796
+ """
797
+ image_size = image[0].size if isinstance(image, list) else image.size
798
+ calculated_width, calculated_height, _ = calculate_dimensions(1024 * 1024, image_size[0] / image_size[1])
799
+
800
+ # height and width are the same as the calculated height and width
801
+ height = calculated_height
802
+ width = calculated_width
803
+
804
+ multiple_of = self.vae_scale_factor * 2
805
+ width = width // multiple_of * multiple_of
806
+ height = height // multiple_of * multiple_of
807
+
808
+ # 1. Check inputs. Raise error if not correct
809
+ self.check_inputs(
810
+ prompt,
811
+ image,
812
+ mask_image,
813
+ strength,
814
+ height,
815
+ width,
816
+ output_type=output_type,
817
+ negative_prompt=negative_prompt,
818
+ prompt_embeds=prompt_embeds,
819
+ negative_prompt_embeds=negative_prompt_embeds,
820
+ prompt_embeds_mask=prompt_embeds_mask,
821
+ negative_prompt_embeds_mask=negative_prompt_embeds_mask,
822
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
823
+ padding_mask_crop=padding_mask_crop,
824
+ max_sequence_length=max_sequence_length,
825
+ )
826
+
827
+ self._guidance_scale = guidance_scale
828
+ self._attention_kwargs = attention_kwargs
829
+ self._current_timestep = None
830
+ self._interrupt = False
831
+
832
+ # 2. Define call parameters
833
+ if prompt is not None and isinstance(prompt, str):
834
+ batch_size = 1
835
+ elif prompt is not None and isinstance(prompt, list):
836
+ batch_size = len(prompt)
837
+ else:
838
+ batch_size = prompt_embeds.shape[0]
839
+
840
+ device = self._execution_device
841
+ # 3. Preprocess image
842
+ if padding_mask_crop is not None:
843
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
844
+ resize_mode = "fill"
845
+ else:
846
+ crops_coords = None
847
+ resize_mode = "default"
848
+
849
+ if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
850
+ image = self.image_processor.resize(image, calculated_height, calculated_width)
851
+ original_image = image
852
+ prompt_image = image
853
+ image = self.image_processor.preprocess(
854
+ image,
855
+ height=calculated_height,
856
+ width=calculated_width,
857
+ crops_coords=crops_coords,
858
+ resize_mode=resize_mode,
859
+ )
860
+ image = image.to(dtype=torch.float32)
861
+
862
+ has_neg_prompt = negative_prompt is not None or (
863
+ negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
864
+ )
865
+
866
+ if true_cfg_scale > 1 and not has_neg_prompt:
867
+ logger.warning(
868
+ f"true_cfg_scale is passed as {true_cfg_scale}, but classifier-free guidance is not enabled since no negative_prompt is provided."
869
+ )
870
+ elif true_cfg_scale <= 1 and has_neg_prompt:
871
+ logger.warning(
872
+ " negative_prompt is passed but classifier-free guidance is not enabled since true_cfg_scale <= 1"
873
+ )
874
+
875
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
876
+ prompt_embeds, prompt_embeds_mask = self.encode_prompt(
877
+ image=prompt_image,
878
+ prompt=prompt,
879
+ prompt_embeds=prompt_embeds,
880
+ prompt_embeds_mask=prompt_embeds_mask,
881
+ device=device,
882
+ num_images_per_prompt=num_images_per_prompt,
883
+ max_sequence_length=max_sequence_length,
884
+ )
885
+ if do_true_cfg:
886
+ negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
887
+ image=prompt_image,
888
+ prompt=negative_prompt,
889
+ prompt_embeds=negative_prompt_embeds,
890
+ prompt_embeds_mask=negative_prompt_embeds_mask,
891
+ device=device,
892
+ num_images_per_prompt=num_images_per_prompt,
893
+ max_sequence_length=max_sequence_length,
894
+ )
895
+
896
+ # 4. Prepare timesteps
897
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
898
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
899
+ mu = calculate_shift(
900
+ image_seq_len,
901
+ self.scheduler.config.get("base_image_seq_len", 256),
902
+ self.scheduler.config.get("max_image_seq_len", 4096),
903
+ self.scheduler.config.get("base_shift", 0.5),
904
+ self.scheduler.config.get("max_shift", 1.15),
905
+ )
906
+ timesteps, num_inference_steps = retrieve_timesteps(
907
+ self.scheduler,
908
+ num_inference_steps,
909
+ device,
910
+ sigmas=sigmas,
911
+ mu=mu,
912
+ )
913
+
914
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
915
+
916
+ if num_inference_steps < 1:
917
+ raise ValueError(
918
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
919
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
920
+ )
921
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
922
+
923
+ # 5. Prepare latent variables
924
+ num_channels_latents = self.transformer.config.in_channels // 4
925
+ latents, noise, image_latents = self.prepare_latents(
926
+ image,
927
+ latent_timestep,
928
+ batch_size * num_images_per_prompt,
929
+ num_channels_latents,
930
+ height,
931
+ width,
932
+ prompt_embeds.dtype,
933
+ device,
934
+ generator,
935
+ latents,
936
+ )
937
+
938
+ mask_condition = self.mask_processor.preprocess(
939
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
940
+ )
941
+
942
+ if masked_image_latents is None:
943
+ masked_image = image * (mask_condition < 0.5)
944
+ else:
945
+ masked_image = masked_image_latents
946
+
947
+ mask, masked_image_latents = self.prepare_mask_latents(
948
+ mask_condition,
949
+ masked_image,
950
+ batch_size,
951
+ num_channels_latents,
952
+ num_images_per_prompt,
953
+ height,
954
+ width,
955
+ prompt_embeds.dtype,
956
+ device,
957
+ generator,
958
+ )
959
+
960
+ img_shapes = [
961
+ [
962
+ (1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2),
963
+ (1, calculated_height // self.vae_scale_factor // 2, calculated_width // self.vae_scale_factor // 2),
964
+ ]
965
+ ] * batch_size
966
+
967
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
968
+ self._num_timesteps = len(timesteps)
969
+
970
+ # handle guidance
971
+ if self.transformer.config.guidance_embeds and guidance_scale is None:
972
+ raise ValueError("guidance_scale is required for guidance-distilled model.")
973
+ elif self.transformer.config.guidance_embeds:
974
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
975
+ guidance = guidance.expand(latents.shape[0])
976
+ elif not self.transformer.config.guidance_embeds and guidance_scale is not None:
977
+ logger.warning(
978
+ f"guidance_scale is passed as {guidance_scale}, but ignored since the model is not guidance-distilled."
979
+ )
980
+ guidance = None
981
+ elif not self.transformer.config.guidance_embeds and guidance_scale is None:
982
+ guidance = None
983
+
984
+ if self.attention_kwargs is None:
985
+ self._attention_kwargs = {}
986
+
987
+ txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
988
+ negative_txt_seq_lens = (
989
+ negative_prompt_embeds_mask.sum(dim=1).tolist() if negative_prompt_embeds_mask is not None else None
990
+ )
991
+
992
+ # 6. Denoising loop
993
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
994
+ for i, t in enumerate(timesteps):
995
+ if self.interrupt:
996
+ continue
997
+
998
+ self._current_timestep = t
999
+
1000
+ latent_model_input = latents
1001
+ if image_latents is not None:
1002
+ latent_model_input = torch.cat([latents, image_latents], dim=1)
1003
+
1004
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1005
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
1006
+ with self.transformer.cache_context("cond"):
1007
+ noise_pred = self.transformer(
1008
+ hidden_states=latent_model_input,
1009
+ timestep=timestep / 1000,
1010
+ guidance=guidance,
1011
+ encoder_hidden_states_mask=prompt_embeds_mask,
1012
+ encoder_hidden_states=prompt_embeds,
1013
+ img_shapes=img_shapes,
1014
+ txt_seq_lens=txt_seq_lens,
1015
+ attention_kwargs=self.attention_kwargs,
1016
+ return_dict=False,
1017
+ )[0]
1018
+ noise_pred = noise_pred[:, : latents.size(1)]
1019
+
1020
+ if do_true_cfg:
1021
+ with self.transformer.cache_context("uncond"):
1022
+ neg_noise_pred = self.transformer(
1023
+ hidden_states=latent_model_input,
1024
+ timestep=timestep / 1000,
1025
+ guidance=guidance,
1026
+ encoder_hidden_states_mask=negative_prompt_embeds_mask,
1027
+ encoder_hidden_states=negative_prompt_embeds,
1028
+ img_shapes=img_shapes,
1029
+ txt_seq_lens=negative_txt_seq_lens,
1030
+ attention_kwargs=self.attention_kwargs,
1031
+ return_dict=False,
1032
+ )[0]
1033
+ neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
1034
+ comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
1035
+
1036
+ cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
1037
+ noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
1038
+ noise_pred = comb_pred * (cond_norm / noise_norm)
1039
+
1040
+ # compute the previous noisy sample x_t -> x_t-1
1041
+ latents_dtype = latents.dtype
1042
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1043
+
1044
+ # for 64 channel transformer only.
1045
+ init_latents_proper = image_latents
1046
+ init_mask = mask
1047
+
1048
+ if i < len(timesteps) - 1:
1049
+ noise_timestep = timesteps[i + 1]
1050
+ init_latents_proper = self.scheduler.scale_noise(
1051
+ init_latents_proper, torch.tensor([noise_timestep]), noise
1052
+ )
1053
+
1054
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1055
+
1056
+ if latents.dtype != latents_dtype:
1057
+ if torch.backends.mps.is_available():
1058
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1059
+ latents = latents.to(latents_dtype)
1060
+
1061
+ if callback_on_step_end is not None:
1062
+ callback_kwargs = {}
1063
+ for k in callback_on_step_end_tensor_inputs:
1064
+ callback_kwargs[k] = locals()[k]
1065
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1066
+
1067
+ latents = callback_outputs.pop("latents", latents)
1068
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1069
+
1070
+ # call the callback, if provided
1071
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1072
+ progress_bar.update()
1073
+
1074
+ if XLA_AVAILABLE:
1075
+ xm.mark_step()
1076
+
1077
+ self._current_timestep = None
1078
+ if output_type == "latent":
1079
+ image = latents
1080
+ else:
1081
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1082
+ latents = latents.to(self.vae.dtype)
1083
+ latents_mean = (
1084
+ torch.tensor(self.vae.config.latents_mean)
1085
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
1086
+ .to(latents.device, latents.dtype)
1087
+ )
1088
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
1089
+ latents.device, latents.dtype
1090
+ )
1091
+ latents = latents / latents_std + latents_mean
1092
+ image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
1093
+ image = self.image_processor.postprocess(image, output_type=output_type)
1094
+
1095
+ if padding_mask_crop is not None:
1096
+ image = [
1097
+ self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image
1098
+ ]
1099
+
1100
+ # Offload all models
1101
+ self.maybe_free_model_hooks()
1102
+
1103
+ if not return_dict:
1104
+ return (image,)
1105
+
1106
+ return QwenImagePipelineOutput(images=image)