lyangas commited on
Commit
6931ba0
·
1 Parent(s): 4c9b947

missed files

Browse files
helpers/__init__.py ADDED
File without changes
helpers/data_processor.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+ from random import choices
5
+
6
+
7
+ def log(*args):
8
+ print(*args, flush=True)
9
+
10
+ def create_group(code):
11
+ """
12
+ Creating group column, transforming an input string
13
+ Parameters:
14
+ code (str): string with ICD-10 code name
15
+ Returns:
16
+ group(str): string with ICD-10 group name
17
+ """
18
+
19
+ group = code.split('.')[0]
20
+ return group
21
+
22
+ def df_creation(texts, labels,
23
+ all_classes, prompt_column_name,
24
+ code_column_name, group_column_name):
25
+ """
26
+ Creates a DataFrame from medical reports, their corresponding ICD-10 codes, and class information.
27
+
28
+ Parameters:
29
+ texts (List[str]): A list of strings, where each string is a medical report.
30
+ labels (List[str]): A list of strings, where each string is an ICD-10 code name
31
+ relevant to the corresponding text in 'texts'.
32
+ all_classes (List[str]): A list of all ICD-10 code names from the initial dataset.
33
+ prompt_column_name (str): The column name in the DataFrame for the prompts.
34
+ code_column_name (str): The column name in the DataFrame for the codes.
35
+ group_column_name (str): The column name in the DataFrame for the groups.
36
+
37
+ Returns:
38
+ pandas.DataFrame: A DataFrame where each row contains the text of the report,
39
+ its corresponding ICD-10 code, and the group category derived
40
+ from the code.
41
+ """
42
+
43
+ df = pd.DataFrame()
44
+ df[prompt_column_name] = texts
45
+ df[code_column_name] = [all_classes[c] for c in labels]
46
+ df[group_column_name] = [all_classes[c].split('.')[0] for c in labels]
47
+ return df
48
+
49
+ def select_random_rows(df_test, balance_column, random_n):
50
+ """
51
+ Selects a random, balanced subset of rows from a DataFrame based on a specified column.
52
+
53
+ This function aims to create a balanced DataFrame by randomly selecting a specified number of rows
54
+ from each unique value in the balance column. It's particularly useful in scenarios where you
55
+ need a balanced sample from a dataset for testing or validation purposes.
56
+
57
+ Parameters:
58
+ df_test (pandas.DataFrame): The DataFrame to select rows from.
59
+ balance_column (str): The name of the column used to balance the data. The function will
60
+ select rows such that each unique value in this column is equally represented.
61
+ random_n (int): The number of rows to select for each unique value in the balance column.
62
+
63
+ Returns:
64
+ pandas.DataFrame: A new DataFrame containing a balanced, random subset of rows.
65
+ """
66
+
67
+ classes = df_test[balance_column].unique()
68
+ balanced_data = []
69
+ for class_name in classes:
70
+ balanced_data += choices(df_test[df_test[balance_column]==class_name].to_dict('records'), k=random_n)
71
+
72
+ df = pd.DataFrame(balanced_data)
73
+ return df
74
+
75
+ def extract_valuable_data(path_to_raw_csv, prompt_column_name,
76
+ code_column_name, path_to_processed_csv, min_text_len, min_samples_per_cls):
77
+ """
78
+ Extracts and processes valuable data from a raw CSV file based on specified criteria.
79
+
80
+ This function loads data from a CSV file, filters out rows based on non-null values in specified columns,
81
+ removes codes with a low number of associated prompts, filters for prompt length, creates a new 'group'
82
+ column, and saves the processed data to a new CSV file.
83
+
84
+ Parameters:
85
+ path_to_raw_csv (str): The file path to the raw CSV data file.
86
+ prompt_column_name (str): The column name in the CSV file for prompts.
87
+ code_column_name (str): The column name in the CSV file for codes.
88
+ path_to_processed_csv (str): The file path where the processed CSV data will be saved.
89
+
90
+ Returns:
91
+ pandas.DataFrame: A DataFrame containing the processed dataset.
92
+ """
93
+
94
+ df = pd.read_csv(path_to_raw_csv)
95
+ log(path_to_raw_csv, prompt_column_name, code_column_name, path_to_processed_csv, min_text_len, min_samples_per_cls)
96
+
97
+ df = df[df[prompt_column_name].notna() & df[code_column_name].notna()]
98
+ log(f"New data is loaded. New data has {len(df)} reports.")
99
+ log(f"New data contains {len(df['code'].unique())} unique codes.")
100
+
101
+ # Leave data for codes where more than min_samples_per_cls prompts.
102
+ unique_values = df['code'].value_counts()
103
+ values_to_remove = unique_values[unique_values <= min_samples_per_cls].index
104
+ df = df[~df['code'].isin(values_to_remove)]
105
+
106
+ # leave prompts that are longer that min_text_len characters
107
+ df = df[df[prompt_column_name].str.len() >= min_text_len]
108
+
109
+ # Creating GROUP column in dataset
110
+ df['group'] = df['code'].apply(create_group)
111
+
112
+ log(f"New data is processed. Processed data has {len(df)} reports.")
113
+ log(f"Processed dataset contains {len(df['code'].unique())} codes.")
114
+ log(f"Processed dataset contains {len(df['group'].unique())} groups.")
115
+
116
+ # Saving processed dataset
117
+ df.to_csv(path_to_processed_csv, index=False)
118
+ log(f"Processed dataset is saved to {path_to_processed_csv}.")
119
+ return df
120
+
121
+
122
+ def balance_data(df, prompt_column_name, code_column_name,
123
+ group_column_name,random_n, test_size, path_to_train_csv,
124
+ path_to_csv_test_codes, path_to_csv_test_groups):
125
+ """
126
+ Balances and splits a dataset into training and test sets, then saves these sets to CSV files.
127
+
128
+ This function takes a DataFrame and performs stratified splitting based on the specified 'code_column_name'
129
+ to create balanced training and test datasets. It then saves the training dataset and two versions of
130
+ the test dataset (one for codes and one for groups) to separate CSV files.
131
+
132
+ Parameters:
133
+ df (pandas.DataFrame): The DataFrame to be processed and split.
134
+ prompt_column_name (str): The column name in the DataFrame for the prompts.
135
+ code_column_name (str): The column name in the DataFrame for the codes.
136
+ group_column_name (str): The column name in the DataFrame for the groups.
137
+ random_n (int): The number of rows to be randomly selected in test datasets for each unique code or group.
138
+ test_size (float): The proportion of the dataset to include in the test split.
139
+ path_to_train_csv (str): The file path where the training dataset CSV will be saved.
140
+ path_to_csv_test_codes (str): The file path where the test dataset for codes CSV will be saved.
141
+ path_to_csv_test_groups (str): The file path where the test dataset for groups CSV will be saved.
142
+
143
+ Returns:
144
+ None
145
+ """
146
+
147
+ texts = np.array(df[prompt_column_name])
148
+ labels = np.array(df[code_column_name])
149
+ groups = np.array(df[group_column_name])
150
+
151
+ all_classes = np.unique(labels).tolist()
152
+ labels = [all_classes.index(l) for l in labels]
153
+ log('='*50)
154
+ log(f"texts={len(texts)} labels={len(labels)} uniq_labels={len(np.unique(labels))} test_size={test_size}")
155
+ log('='*50)
156
+ texts_train, texts_test, labels_train, labels_test = train_test_split(
157
+ texts, labels, test_size=test_size, random_state=42, stratify=labels
158
+ )
159
+
160
+ log(f"Train dataset len={len(texts_train)}")
161
+ log(f"Test dataset len={len(texts_test)}")
162
+ log(f"Count of classes={len(np.unique(labels))}")
163
+
164
+ # Creating TRAIN and TEST dataset
165
+ df_train = df_creation(texts_train, labels_train, all_classes,
166
+ prompt_column_name, code_column_name, group_column_name)
167
+ df_train.to_csv(path_to_train_csv, index=False)
168
+ log(f"TRAIN dataset is saved to {path_to_train_csv}")
169
+
170
+ # Creating test datasets for codes and groups
171
+ df_test = df_creation(texts_test, labels_test, all_classes,
172
+ prompt_column_name, code_column_name, group_column_name)
173
+
174
+ df_test_codes = df_test # select_random_rows(df_test, code_column_name, random_n)
175
+ df_test_codes.to_csv(path_to_csv_test_codes, index=False)
176
+ log(f"TEST dataset for codes is saved to {path_to_csv_test_codes}")
177
+
178
+ df_test_groups = df_test # select_random_rows(df_test, group_column_name, random_n)
179
+ df_test_groups.to_csv(path_to_csv_test_groups, index=False)
180
+ log(f"TEST dataset for groups is saved to {path_to_csv_test_groups}")
helpers/firebase.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import firebase_admin
2
+ from firebase_admin import credentials
3
+ from firebase_admin import firestore
4
+
5
+
6
+ class FirebaseClient:
7
+ def __init__(self, path_to_certificate):
8
+ # Initialize Firebase Admin SDK
9
+ cred = credentials.Certificate(path_to_certificate) # Path to your service account key JSON file
10
+ firebase_admin.initialize_app(cred)
11
+
12
+ # Initialize Firestore database
13
+ self.db = firestore.client()
14
+
15
+ def add_task(self, task_data):
16
+ """
17
+ Add a new task to Firestore.
18
+
19
+ Args:
20
+ task_data (dict): Dictionary containing task data.
21
+ Example: {'title': 'Task Title', 'description': 'Task Description', 'status': 'pending'}
22
+ """
23
+ # Add task data to Firestore
24
+ doc_ref = self.db.collection('tasks').document()
25
+ doc_ref.set(task_data)
26
+ return doc_ref.id
27
+
28
+ def get_task_by_status(self, status):
29
+ # Reference to the tasks collection
30
+ tasks_ref = self.db.collection('tasks')
31
+
32
+ # Query tasks with status 'pending'
33
+ query = tasks_ref.where('status', '==', status)
34
+
35
+ # Get documents that match the query
36
+ pending_tasks = query.stream()
37
+
38
+ # Convert documents to dictionaries
39
+ pending_tasks_data = []
40
+ for doc in pending_tasks:
41
+ task_data = doc.to_dict()
42
+ task_data['id'] = doc.id
43
+ pending_tasks_data.append(task_data)
44
+
45
+ return pending_tasks_data
46
+
47
+ def get_all_tasks(self):
48
+ """
49
+ Retrieve all tasks from Firestore.
50
+
51
+ Returns:
52
+ list: A list containing dictionaries, each representing a task.
53
+ """
54
+ # Reference to the 'tasks' collection
55
+ tasks_ref = self.db.collection('tasks')
56
+
57
+ # Get all documents in the collection
58
+ docs = tasks_ref.stream()
59
+
60
+ # Initialize an empty list to store tasks
61
+ tasks = []
62
+
63
+ # Iterate over each document and add it to the tasks list
64
+ for doc in docs:
65
+ doc_dict = doc.to_dict()
66
+ doc_dict['id'] = doc.id
67
+ tasks.append(doc_dict)
68
+
69
+ return tasks
70
+
71
+ def update(self, task_id, data):
72
+ """
73
+ Reserve a task by a worker.
74
+
75
+ Args:
76
+ task_id (str): ID of the task to be reserved.
77
+ worker_id (str): ID of the worker reserving the task.
78
+ """
79
+ # Reference to the task document
80
+ task_ref = self.db.collection('tasks').document(task_id)
81
+
82
+ # Update the task document to indicate it has been reserved by the worker
83
+ task_ref.update(data)
84
+
85
+ def delete_task(self, task_id):
86
+ """
87
+ Delete a task from Firestore by its ID.
88
+
89
+ Args:
90
+ task_id (str): ID of the task to be deleted.
91
+ """
92
+ # Reference to the task document
93
+ task_ref = self.db.collection('tasks').document(task_id)
94
+
95
+ # Delete the task document
96
+ task_ref.delete()
97
+
98
+ def get_task_by_id(self, task_id):
99
+ """
100
+ Retrieve a task from Firestore by its ID.
101
+
102
+ Args:
103
+ task_id (str): ID of the task to be retrieved.
104
+
105
+ Returns:
106
+ dict or None: Dictionary containing the task data if found, None otherwise.
107
+ """
108
+ # Reference to the task document
109
+ task_ref = self.db.collection('tasks').document(task_id)
110
+
111
+ # Retrieve the task document
112
+ task_doc = task_ref.get()
113
+
114
+ # Check if the task document exists
115
+ if task_doc.exists:
116
+ return task_doc.to_dict()
117
+ else:
118
+ return None
119
+
120
+ def find_tasks_by_status(self, status):
121
+ """
122
+ Find all tasks in Firestore with the specified status.
123
+
124
+ Args:
125
+ status (str): Status value to filter tasks by.
126
+
127
+ Returns:
128
+ list: List of dictionaries containing task data.
129
+ """
130
+ # Reference to the 'tasks' collection
131
+ tasks_ref = self.db.collection('tasks')
132
+
133
+ # Query tasks with the specified status
134
+ query = tasks_ref.where('status', '==', status)
135
+
136
+ # Get documents that match the query
137
+ docs = query.stream()
138
+
139
+ # Initialize an empty list to store tasks
140
+ tasks = []
141
+
142
+ # Iterate over each document and add it to the tasks list
143
+ for doc in docs:
144
+ task = doc.to_dict()
145
+ task['id'] = doc.id
146
+ tasks.append(task)
147
+
148
+ return tasks
helpers/gcloud.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from google.cloud import storage
3
+ from tqdm import tqdm
4
+ from googleapiclient import discovery
5
+ import requests
6
+
7
+
8
+ service = discovery.build('compute', 'v1')
9
+ storage_client = storage.Client()
10
+
11
+ def download_csv_from_gcloud(bucket_name, object_name, destination_file_path):
12
+ """Download a file from Google Cloud Storage."""
13
+
14
+ bucket = storage_client.bucket(bucket_name)
15
+ blob = bucket.blob(object_name)
16
+
17
+ # Download the file to a local path
18
+ blob.download_to_filename(destination_file_path)
19
+ print(f"File {object_name} downloaded to {destination_file_path}")
20
+
21
+ def upload_folder_to_gcloud(bucket_name, source_folder_path, destination_folder_name):
22
+ """Uploads all files in a folder to the Google Cloud Storage bucket."""
23
+ # Instantiates a client
24
+ # storage_client = storage.Client()
25
+
26
+ # Gets the bucket
27
+ print(f"bucket_name={bucket_name}, source_folder_path={source_folder_path}, destination_folder_name={destination_folder_name}", flush=True)
28
+ bucket = storage_client.bucket(bucket_name)
29
+
30
+ # Walk through the folder and upload each file
31
+ for root, _, files in os.walk(source_folder_path):
32
+ for file_name in files:
33
+ # Construct the local file path
34
+ local_file_path = os.path.join(root, file_name)
35
+
36
+ # Construct the destination blob name
37
+ destination_blob_name = os.path.join(destination_folder_name, os.path.relpath(local_file_path, source_folder_path))
38
+ print(f"destination_blob_name={destination_blob_name}")
39
+ # Upload the file
40
+ blob = bucket.blob(destination_blob_name)
41
+ blob.upload_from_filename(local_file_path)
42
+
43
+ print(f"File {local_file_path} uploaded to {destination_blob_name}.")
44
+
45
+
46
+ def download_folder(bucket_name, folder_name, destination_directory):
47
+ """
48
+ Download the contents of a folder from a Google Cloud Storage bucket to a local directory.
49
+
50
+ Args:
51
+ bucket_name (str): Name of the Google Cloud Storage bucket.
52
+ folder_name (str): Name of the folder in the bucket to download.
53
+ destination_directory (str): Local directory to save the downloaded files.
54
+ """
55
+
56
+ # Get the bucket
57
+ bucket = storage_client.get_bucket(bucket_name)
58
+
59
+ # List objects in the folder
60
+ blobs = bucket.list_blobs(prefix=folder_name)
61
+
62
+ # Ensure destination directory exists
63
+ os.makedirs(destination_directory, exist_ok=True)
64
+
65
+ # Iterate over each object in the folder
66
+ for blob in tqdm(blobs, desc=f'Downloading {folder_name}'):
67
+ # Determine local file path
68
+ local_file_path = os.path.join(destination_directory, os.path.relpath(blob.name, folder_name))
69
+
70
+ # Ensure local directory exists
71
+ os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
72
+
73
+ # Download the object to a local file
74
+ blob.download_to_filename(local_file_path)
75
+
76
+
77
+ def start_vm(project, zone, instance):
78
+ request = service.instances().start(project=project, zone=zone, instance=instance)
79
+ response = request.execute()
80
+ return response
81
+
82
+ def stop_vm(project, zone, instance):
83
+ request = service.instances().stop(project=project, zone=zone, instance=instance)
84
+ response = request.execute()
85
+ return response
86
+
87
+ def get_current_instance_name():
88
+ # URL for the metadata server
89
+ METADATA_URL = "http://metadata.google.internal/computeMetadata/v1/instance/name"
90
+ HEADERS = {"Metadata-Flavor": "Google"}
91
+ try:
92
+ response = requests.get(METADATA_URL, headers=HEADERS)
93
+ response.raise_for_status() # Raise an error for bad status codes
94
+ instance_name = response.text
95
+ return instance_name
96
+ except requests.exceptions.RequestException as e:
97
+ print(f"Error fetching instance name: {e}")
98
+ return None
helpers/required_classes.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from typing import List
3
+ import pandas as pd
4
+ import torch
5
+ import xgboost as xgb
6
+ from transformers import AutoTokenizer, BertForSequenceClassification
7
+ from tqdm import tqdm
8
+
9
+
10
+ class BertEmbedder:
11
+ def __init__(self, tokenizer_path:str, model_path:str, cut_head:bool=False):
12
+ """
13
+ cut_head = True if the model have classifier head
14
+ """
15
+ self.embedder = BertForSequenceClassification.from_pretrained(model_path)
16
+ self.max_length = self.embedder.config.max_position_embeddings
17
+ self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, max_length=self.max_length)
18
+
19
+ if cut_head:
20
+ self.embedder = self.embedder.bert
21
+
22
+ self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
23
+ print(f"Used device for BERT: {self.device }", flush=True)
24
+ self.embedder.to(self.device)
25
+
26
+ def __call__(self, text: str):
27
+ encoded_input = self.tokenizer(text,
28
+ return_tensors='pt',
29
+ max_length=self.max_length,
30
+ padding=True,
31
+ truncation=True).to(self.device)
32
+ model_output = self.embedder(**encoded_input)
33
+ text_embed = model_output.pooler_output[0].cpu()
34
+ return text_embed
35
+
36
+ def batch_predict(self, texts: List[str]):
37
+ encoded_input = self.tokenizer(texts,
38
+ return_tensors='pt',
39
+ max_length=self.max_length,
40
+ padding=True,
41
+ truncation=True).to(self.device)
42
+ model_output = self.embedder(**encoded_input)
43
+ texts_embeds = model_output.pooler_output.cpu()
44
+ return texts_embeds
45
+
46
+
47
+ class PredictModel:
48
+ def __init__(self, embedder, classifier_code, classifier_group, batch_size=8):
49
+ self.batch_size = batch_size
50
+ self.embedder = embedder
51
+ self.classifier_code = classifier_code
52
+ self.classifier_group = classifier_group
53
+
54
+ def _texts2vecs(self, texts, logging=False):
55
+ embeds = []
56
+ batches_texts = np.array_split(texts, len(texts) // self.batch_size)
57
+ if logging:
58
+ iterator = tqdm(batches_texts)
59
+ else:
60
+ iterator = batches_texts
61
+ for batch_texts in iterator:
62
+ batch_texts = batch_texts.tolist()
63
+ embeds += self.embedder.batch_predict(batch_texts).tolist()
64
+ embeds = np.array(embeds)
65
+ return embeds
66
+
67
+ def fit(self, texts: List[str], labels: List[str], logging: bool=False):
68
+ if logging:
69
+ print('Start text2vec transform')
70
+ embeds = self._texts2vecs(texts, logging)
71
+ if logging:
72
+ print('Start codes-classifier fitting')
73
+ self.classifier_code.fit(embeds, labels)
74
+ labels = [l.split('.')[0] for l in labels]
75
+ if logging:
76
+ print('Start groups-classifier fitting')
77
+ self.classifier_group.fit(embeds, labels)
78
+
79
+ def predict_code(self, texts: List[str], log: bool=False):
80
+ if log:
81
+ print('Start text2vec transform')
82
+ embeds = self._texts2vecs(texts, log)
83
+ if log:
84
+ print('Start classifier prediction')
85
+ prediction = self.classifier_code.predict(embeds)
86
+ return prediction
87
+
88
+ def predict_group(self, texts: List[str], logging: bool=False):
89
+ if logging:
90
+ print('Start text2vec transform')
91
+ embeds = self._texts2vecs(texts, logging)
92
+ if logging:
93
+ print('Start classifier prediction')
94
+ prediction = self.classifier_group.predict(embeds)
95
+ return prediction
96
+
97
+ class CustomXGBoost:
98
+ def __init__(self, use_gpu):
99
+ if use_gpu:
100
+ self.model = xgb.XGBClassifier(tree_method="gpu_hist")
101
+ else:
102
+ self.model = xgb.XGBClassifier()
103
+ self.classes_ = None
104
+
105
+ def fit(self, X, y, **kwargs):
106
+ self.classes_ = np.unique(y).tolist()
107
+ y = [self.classes_.index(l) for l in y]
108
+ self.model.fit(X, y, **kwargs)
109
+
110
+ def predict_proba(self, X):
111
+ pred = self.model.predict_proba(X)
112
+ return pred
113
+
114
+ def predict(self, X):
115
+ preds = self.model.predict_proba(X)
116
+ return np.array([self.classes_[p] for p in np.argmax(preds, axis=1)])
117
+
118
+ class SimpleModel:
119
+ def __init__(self):
120
+ self.classes_ = None
121
+
122
+ def fit(self, X, y):
123
+ print(y[0])
124
+ self.classes_ = [y[0]]
125
+
126
+ def predict_proba(self, X):
127
+ return np.array([[1.0]] * len(X))
128
+
129
+ def balance_dataset(labels_train_for_group, vecs_train_for_group, balance=None, logging=True):
130
+ if balance == 'remove':
131
+ min_len = -1
132
+ for code_l in np.unique(labels_train_for_group):
133
+ cur_len = sum(labels_train_for_group==code_l)
134
+ if logging:
135
+ print(code_l, cur_len)
136
+ if min_len > cur_len or min_len==-1:
137
+ min_len = cur_len
138
+ if logging:
139
+ print('min_len is', min_len)
140
+ df_train_group = pd.DataFrame()
141
+ df_train_group['labels'] = labels_train_for_group
142
+ df_train_group['vecs'] = vecs_train_for_group.tolist()
143
+ df_train_group = df_train_group.groupby('labels', as_index=False).apply(lambda array: array.loc[np.random.choice(array.index, min_len, False),:])
144
+ labels_train_for_group = df_train_group['labels'].values
145
+ vecs_train_for_group = [np.array(v) for v in df_train_group['vecs'].values]
146
+
147
+ elif balance == 'duplicate':
148
+ df_train_group = pd.DataFrame()
149
+ df_train_group['labels'] = labels_train_for_group
150
+ df_train_group['vecs'] = vecs_train_for_group.tolist()
151
+ max_len = 0
152
+ for code_data in df_train_group.groupby('labels'):
153
+ cur_len = len(code_data[1])
154
+ if logging:
155
+ print(code_data[0], cur_len)
156
+ if max_len < cur_len:
157
+ max_len = cur_len
158
+ if logging:
159
+ print('max_len is ', max_len)
160
+ labels_train_for_group = []
161
+ vecs_train_for_group = []
162
+ for code_data in df_train_group.groupby('labels'):
163
+ cur_len = len(code_data[1])
164
+ cur_labels = code_data[1]['labels'].values.tolist()
165
+ cur_vecs = code_data[1]['vecs'].values.tolist()
166
+ while cur_len < max_len:
167
+ cur_len *= 2
168
+ cur_labels += cur_labels
169
+ cur_vecs += cur_vecs
170
+ cur_labels = cur_labels[:max_len]
171
+ cur_vecs = cur_vecs[:max_len]
172
+ labels_train_for_group += cur_labels
173
+ vecs_train_for_group += cur_vecs
174
+
175
+ labels_train_for_group = np.array(labels_train_for_group)
176
+ vecs_train_for_group = np.array(vecs_train_for_group)
177
+ return labels_train_for_group, vecs_train_for_group
helpers/trainer_classifiers.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import matplotlib.pyplot as plt
4
+ from sklearn.metrics import accuracy_score, fbeta_score, confusion_matrix, ConfusionMatrixDisplay
5
+ from sklearn.utils.class_weight import compute_sample_weight
6
+ import pickle as pkl
7
+ from tqdm import tqdm
8
+ import time
9
+ import os
10
+ import shutil
11
+ import json
12
+ from copy import deepcopy
13
+
14
+ from helpers.required_classes import *
15
+
16
+
17
+ def log(*args):
18
+ print(*args, flush=True)
19
+
20
+ def train_code_classifier(vecs_train_codes, vecs_test_for_groups,
21
+ labels_train_codes, labels_test_groups_codes, labels_test_groups_groups,
22
+ labels_train_groups,
23
+ models_folder, group_name, balance=None, logging=True, use_gpu=True):
24
+ """
25
+ balance - is a type of balancing dataset:
26
+ remove - remove items per class until amount texts per clas is not the same as minimum amount
27
+ duplicate - duplicate items per class until amount texts per clas is not the same as maximum amount
28
+ weight - weighted training model
29
+ None - without any balancing method
30
+ """
31
+
32
+ log(f"training model for codes classifiers in group {group_name}")
33
+
34
+ # create / remove folder
35
+ experiment_path = f"{models_folder}/{group_name}"
36
+ if not os.path.exists(experiment_path):
37
+ os.makedirs(experiment_path, exist_ok=True)
38
+ else:
39
+ shutil.rmtree(experiment_path)
40
+ os.makedirs(experiment_path, exist_ok=True)
41
+
42
+ labels_train_for_group = labels_train_codes[labels_train_groups==group_name]
43
+ if logging:
44
+ log(f"e.g. labels in the group: {labels_train_for_group[:3]} cng of codes: {len(np.unique(labels_train_for_group))} cnt of texts: {len(labels_train_for_group)}")
45
+
46
+ # prepare train labels
47
+ if len(np.unique(labels_train_for_group)) < 2:
48
+ # if group have only one code inside
49
+ code_name = labels_train_for_group[0]
50
+ if logging:
51
+ log(f'group {group_name} have only one code inside {code_name}')
52
+ simple_clf = SimpleModel()
53
+ simple_clf.fit([], [code_name])
54
+ pkl.dump(simple_clf, open(f"{experiment_path}/{group_name}_code_clf.pkl", 'wb'))
55
+ return {"f1_score": 'one_cls', "accuracy": 'one_cls'}
56
+
57
+ sample_weights = compute_sample_weight(
58
+ class_weight='balanced',
59
+ y=labels_train_for_group
60
+ )
61
+
62
+ # prepare other data
63
+ vecs_train_for_group = vecs_train_codes[labels_train_groups==group_name]
64
+ vecs_test_for_group = vecs_test_for_groups[labels_test_groups_groups==group_name]
65
+ labels_test_for_group = labels_test_groups_codes[labels_test_groups_groups==group_name]
66
+
67
+ labels_train_for_group, vecs_train_for_group = balance_dataset(
68
+ labels_train_for_group, vecs_train_for_group, balance=balance
69
+ )
70
+
71
+ fit_start_time = time.time()
72
+ model = CustomXGBoost(use_gpu)
73
+
74
+ if balance == 'weight':
75
+ model.fit(vecs_train_for_group, labels_train_for_group, sample_weight=sample_weights)
76
+ else:
77
+ model.fit(vecs_train_for_group, labels_train_for_group)
78
+
79
+ pkl.dump(model, open(f"{experiment_path}/{group_name}_code_clf.pkl", 'wb'))
80
+ if logging:
81
+ log(f'Trained in {time.time() - fit_start_time}s')
82
+
83
+ pred_start_time = time.time()
84
+ predictions_group = model.predict(vecs_test_for_group)
85
+ scores = {
86
+ "f1_score": fbeta_score(labels_test_for_group, predictions_group, beta=1, average='macro'),
87
+ "accuracy": accuracy_score(labels_test_for_group, predictions_group)
88
+ }
89
+ if logging:
90
+ log(scores, f'Predicted in {time.time() - pred_start_time}s')
91
+ with open(f"{experiment_path}/{group_name}_scores.json", 'w') as f:
92
+ f.write(json.dumps(scores))
93
+
94
+ conf_matrix = confusion_matrix(labels_test_for_group, predictions_group)
95
+ disp_code = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,
96
+ display_labels=model.classes_, )
97
+ fig, ax = plt.subplots(figsize=(5,5))
98
+ disp_code.plot(ax=ax)
99
+ plt.xticks(rotation=90)
100
+ plt.savefig(f"{experiment_path}/{group_name}_matrix.png")
101
+
102
+ return scores
103
+
104
+ def train_codes_for_groups(vecs_train_codes, vecs_test_groups,
105
+ labels_train_codes, labels_test_groups_codes, labels_test_groups_groups,
106
+ labels_train_groups,
107
+ output_path, logging, use_gpu=True):
108
+ all_scores = []
109
+ for group_name in tqdm(np.unique(labels_train_groups)):
110
+ row = {'group': group_name}
111
+ for balanced_method in ['weight']: # [None, 'remove', 'weight', 'duplicate']:
112
+ if logging:
113
+ log('\n', '-'*50)
114
+ scores = train_code_classifier(vecs_train_codes, vecs_test_groups,
115
+ labels_train_codes, labels_test_groups_codes, labels_test_groups_groups,
116
+ labels_train_groups,
117
+ output_path, group_name, balanced_method, logging, use_gpu)
118
+ scores = {f"{balanced_method}_{k}": v for k, v in scores.items()}
119
+ row.update(scores)
120
+ all_scores.append(row)
121
+
122
+ df = pd.DataFrame(all_scores)
123
+ columns = df.columns.tolist()
124
+ columns.remove('group')
125
+ mean_scores = {'group': 'MEAN'}
126
+ for score_name in columns:
127
+ mean_score = df[df[score_name] != 'one_cls'][score_name].mean()
128
+ mean_scores.update({score_name: float(mean_score)})
129
+ df = pd.concat([df, pd.DataFrame([mean_scores])], ignore_index=True)
130
+ return df
131
+
132
+ def make_experiment_classifier(vecs_train_codes, vecs_test_codes, vecs_test_group,
133
+ labels_train_codes, labels_test_codes,
134
+ labels_test_groups, labels_train_groups,
135
+ sample_weights_codes, sample_weights_groups,
136
+ texts_test_codes, texts_test_groups,
137
+ experiment_name, classifier_model_code, classifier_model_group, experiment_path, balance=None):
138
+ # train different models as base model for group and codes
139
+
140
+ log(f'Model: {experiment_name}')
141
+ # create / remove experiment folder
142
+ experiment_path = f"{experiment_path}/{experiment_name}"
143
+ if not os.path.exists(experiment_path):
144
+ os.makedirs(experiment_path, exist_ok=True)
145
+ else:
146
+ shutil.rmtree(experiment_path)
147
+ os.makedirs(experiment_path, exist_ok=True)
148
+
149
+ # fit the models
150
+ cls_codes = deepcopy(classifier_model_code)
151
+ cls_groups = deepcopy(classifier_model_group)
152
+
153
+ labels_train_codes_balanced, vecs_train_codes_balanced = balance_dataset(
154
+ labels_train_codes, vecs_train_codes, balance=balance
155
+ )
156
+ labels_train_groups_balanced, vecs_train_codes_balanced = balance_dataset(
157
+ labels_train_groups, vecs_train_codes, balance=balance
158
+ )
159
+
160
+ log('start training base model')
161
+ if balance == 'weight':
162
+ try:
163
+ start_time = time.time()
164
+ cls_codes.fit(vecs_train_codes_balanced, labels_train_codes_balanced, sample_weight=sample_weights_codes)
165
+ log(f'codes classify trained in {(time.time() - start_time) / 60}m')
166
+ start_time = time.time()
167
+ cls_groups.fit(vecs_train_codes_balanced, labels_train_groups_balanced, sample_weight=sample_weights_groups)
168
+ log(f'groups classify trained in {(time.time() - start_time) / 60}m')
169
+ except Exception as e:
170
+ log(str(e))
171
+ start_time = time.time()
172
+ cls_codes.fit(vecs_train_codes_balanced, labels_train_codes_balanced)
173
+ log(f'codes classify trained in {(time.time() - start_time) / 60}m')
174
+ start_time = time.time()
175
+ cls_groups.fit(vecs_train_codes_balanced, labels_train_groups_balanced)
176
+ log(f'groups classify trained in {(time.time() - start_time) / 60}m')
177
+ else:
178
+ start_time = time.time()
179
+ cls_codes.fit(vecs_train_codes_balanced, labels_train_codes_balanced)
180
+ log(f'codes classify trained in {(time.time() - start_time) / 60}m')
181
+ start_time = time.time()
182
+ cls_groups.fit(vecs_train_codes_balanced, labels_train_groups_balanced)
183
+ log(f'groups classify trained in {(time.time() - start_time) / 60}m')
184
+
185
+ pkl.dump(cls_codes, open(f"{experiment_path}/{experiment_name}_codes.pkl", 'wb'))
186
+ pkl.dump(cls_groups, open(f"{experiment_path}/{experiment_name}_groups.pkl", 'wb'))
187
+
188
+ # inference the model
189
+ predictions_code = cls_codes.predict(vecs_test_codes)
190
+ predictions_group = cls_groups.predict(vecs_test_group)
191
+ scores = {
192
+ "f1_score_code": fbeta_score(labels_test_codes, predictions_code, beta=1, average='macro'),
193
+ "f1_score_group": fbeta_score(labels_test_groups, predictions_group, beta=1, average='macro'),
194
+ "accuracy_code": accuracy_score(labels_test_codes, predictions_code),
195
+ "accuracy_group": accuracy_score(labels_test_groups, predictions_group)
196
+ }
197
+ with open(f"{experiment_path}/{experiment_name}_scores.json", 'w') as f:
198
+ f.write(json.dumps(scores))
199
+
200
+ conf_matrix = confusion_matrix(labels_test_codes, predictions_code)
201
+ disp_code = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,
202
+ display_labels=cls_codes.classes_, )
203
+ fig, ax = plt.subplots(figsize=(20,20))
204
+ disp_code.plot(ax=ax)
205
+ plt.xticks(rotation=90)
206
+ plt.savefig(f"{experiment_path}/{experiment_name}_codes_matrix.png")
207
+
208
+ conf_matrix = confusion_matrix(labels_test_groups, predictions_group)
209
+ disp_group = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,
210
+ display_labels=cls_groups.classes_, )
211
+
212
+ fig, ax = plt.subplots(figsize=(20,20))
213
+ disp_group.plot(ax=ax)
214
+ plt.xticks(rotation=90)
215
+ plt.savefig(f"{experiment_path}/{experiment_name}_groups_matrix.png")
216
+
217
+ pd.DataFrame({'codes': predictions_code, 'truth': labels_test_codes, 'text': texts_test_codes}).to_csv(f"{experiment_path}/{experiment_name}_pred_codes.csv")
218
+ pd.DataFrame({'groups': predictions_group, 'truth': labels_test_groups, 'text': texts_test_groups}).to_csv(f"{experiment_path}/{experiment_name}_pred_groups.csv")
219
+ return predictions_code, predictions_group, scores
220
+
221
+ def train_base_clfs(classifiers, vecs_train_codes, vecs_test_codes, vecs_test_group,
222
+ labels_train_codes, labels_test_codes,
223
+ labels_test_groups_codes, labels_test_groups_groups, labels_train_groups,
224
+ sample_weights_codes, sample_weights_groups,
225
+ texts_test_codes, texts_test_groups, output_path):
226
+ results = ''
227
+ for experiment_data in classifiers:
228
+ for balanced_method in ['weight']:
229
+ exp_name = experiment_data['name']
230
+ cls_model = experiment_data['model']
231
+ _, _, scores = make_experiment_classifier(vecs_train_codes, vecs_test_codes, vecs_test_group,
232
+ labels_train_codes, labels_test_codes,
233
+ labels_test_groups_groups, labels_train_groups,
234
+ sample_weights_codes, sample_weights_groups,
235
+ texts_test_codes, texts_test_groups,
236
+ exp_name, cls_model, cls_model, output_path, balance=None)
237
+ res = f"\n\n{exp_name} balanced by: {balanced_method} scores: {scores}"
238
+ results += res
239
+ log(res)
240
+ return results
helpers/trainer_embedder.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
4
+ from transformers import TrainingArguments, Trainer
5
+ from transformers import EarlyStoppingCallback
6
+ import pickle as pkl
7
+ from datetime import datetime
8
+
9
+
10
+ class Dataset(torch.utils.data.Dataset):
11
+ def __init__(self, encodings, labels=None):
12
+ self.encodings = encodings
13
+ self.labels = labels
14
+
15
+ def __getitem__(self, idx):
16
+ item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
17
+ item["labels"] = torch.tensor(self.labels[idx])
18
+ return item
19
+
20
+ def __len__(self):
21
+ return len(self.encodings["input_ids"])
22
+
23
+ def compute_metrics(p):
24
+ pred, labels = p
25
+ pred = np.argmax(pred, axis=1)
26
+
27
+ accuracy = accuracy_score(y_true=labels, y_pred=pred)
28
+ recall = recall_score(y_true=labels, y_pred=pred, average='macro', zero_division=0)
29
+ precision = precision_score(y_true=labels, y_pred=pred, average='macro', zero_division=0)
30
+ f1 = f1_score(y_true=labels, y_pred=pred, average="macro", zero_division=0)
31
+
32
+ return {"eval_accuracy": accuracy, "eval_precision": precision, "eval_recall": recall, "eval_f1": f1}
33
+
34
+ def train(model, train_dataset, val_dataset, output_dir, save_steps, num_train_epochs=10):
35
+ args = TrainingArguments(
36
+ output_dir=output_dir,
37
+ overwrite_output_dir=True,
38
+ evaluation_strategy="steps",
39
+ eval_steps=save_steps,
40
+ per_device_train_batch_size=16,
41
+ per_device_eval_batch_size=16,
42
+ num_train_epochs=num_train_epochs,
43
+ seed=0,
44
+ save_steps=save_steps,
45
+ save_total_limit=2,
46
+ load_best_model_at_end=True,
47
+ metric_for_best_model='eval_f1'
48
+ )
49
+ trainer = Trainer(
50
+ model=model,
51
+ args=args,
52
+ train_dataset=train_dataset,
53
+ eval_dataset=val_dataset,
54
+ compute_metrics=compute_metrics,
55
+ callbacks = [EarlyStoppingCallback(early_stopping_patience=3)]
56
+ )
57
+
58
+ res = trainer.train()