import math import torch.nn.functional as F import numpy as np import torch def quaternion_to_matrix(quaternions): """ From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def axis_angle_to_quaternion(axis_angle): """ From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html Convert rotations given as axis/angle to quaternions. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: quaternions with real part first, as tensor of shape (..., 4). """ angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) half_angles = 0.5 * angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) quaternions = torch.cat( [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 ) return quaternions def axis_angle_to_matrix(axis_angle): """ From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html Convert rotations given as axis/angle to rotation matrices. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: """ Returns torch.sqrt(torch.max(0, x)) but with a zero subgradient where x is 0. """ ret = torch.zeros_like(x) positive_mask = x > 0 ret[positive_mask] = torch.sqrt(x[positive_mask]) return ret def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part first, as tensor of shape (..., 4). """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( matrix.reshape(batch_dim + (9,)), dim=-1 ) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) return quat_candidates[ F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : ].reshape(batch_dim + (4,)) def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor: """ Convert rotations given as quaternions to axis/angle. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) half_angles = torch.atan2(norms, quaternions[..., :1]) angles = 2 * half_angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) return quaternions[..., 1:] / sin_half_angles_over_angles def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to axis/angle. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) def rigid_transform_Kabsch_3D_torch(A, B): # R = 3x3 rotation matrix, t = 3x1 column vector # This already takes residue identity into account. assert A.shape[1] == B.shape[1] num_rows, num_cols = A.shape if num_rows != 3: raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") num_rows, num_cols = B.shape if num_rows != 3: raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") # find mean column wise: 3 x 1 centroid_A = torch.mean(A, axis=1, keepdims=True) centroid_B = torch.mean(B, axis=1, keepdims=True) # subtract mean Am = A - centroid_A Bm = B - centroid_B H = Am @ Bm.T # find rotation U, S, Vt = torch.linalg.svd(H) R = Vt.T @ U.T # special reflection case if torch.linalg.det(R) < 0: # print("det(R) < R, reflection detected!, correcting for it ...") SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) R = (Vt.T @ SS) @ U.T assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher t = -R @ centroid_A + centroid_B return R, t def rigid_transform_Kabsch_3D_torch_batch(A, B): # R = Bx3x3 rotation matrix, t = Bx3x1 column vector assert A.shape == B.shape _, N, M = A.shape if M != 3: raise Exception(f"matrix A and B should be BxNx3") A, B = A.permute(0, 2, 1), B.permute(0, 2, 1) # find mean column wise: 3 x 1 centroid_A = torch.mean(A, axis=2, keepdims=True) centroid_B = torch.mean(B, axis=2, keepdims=True) # subtract mean Am = A - centroid_A Bm = B - centroid_B H = torch.bmm(Am, Bm.transpose(1, 2)) # find rotation U, S, Vt = torch.linalg.svd(H) R = torch.bmm(Vt.transpose(1, 2), U.transpose(1, 2)) # reflection case SS = torch.diag(torch.tensor([1., 1., -1.], device=A.device)) Rm = torch.bmm(Vt.transpose(1,2) @ SS, U.transpose(1, 2)) R = torch.where(torch.linalg.det(R)[:, None, None] < 0, Rm, R) assert torch.all(torch.abs(torch.linalg.det(R) - 1) < 3e-3) # note I had to change this error bound to be higher t = torch.bmm(-R, centroid_A) + centroid_B return R, t def rigid_transform_Kabsch_independent_torch(A, B): # R = 3x3 rotation matrix, t = 3x1 column vector # This already takes residue identity into account. assert A.shape[1] == B.shape[1] num_rows, num_cols = A.shape if num_rows != 3: raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") num_rows, num_cols = B.shape if num_rows != 3: raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") # find mean column wise: 3 x 1 centroid_A = torch.mean(A, axis=1, keepdims=True) centroid_B = torch.mean(B, axis=1, keepdims=True) # subtract mean Am = A - centroid_A Bm = B - centroid_B H = Am @ Bm.T # find rotation U, S, Vt = torch.linalg.svd(H) R = Vt.T @ U.T # special reflection case if torch.linalg.det(R) < 0: # print("det(R) < R, reflection detected!, correcting for it ...") SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) R = (Vt.T @ SS) @ U.T assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher t = - centroid_A + centroid_B # note does not change rotation R_vec = matrix_to_axis_angle(R) return t, R_vec