from e3nn import o3 import torch from esm.pretrained import load_model_and_alphabet from torch import nn from torch.nn import functional as F from torch_cluster import radius, radius_graph from torch_geometric.utils import subgraph from torch_scatter import scatter_mean import numpy as np from models.layers import GaussianSmearing, AtomEncoder from models.tensor_layers import get_irrep_seq, TensorProductConvLayer from utils import so3, torus from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims, rec_atom_feature_dims AGGREGATORS = {"mean": lambda x: torch.mean(x, dim=1), "max": lambda x: torch.max(x, dim=1)[0], "min": lambda x: torch.min(x, dim=1)[0], "std": lambda x: torch.std(x, dim=1)} class AAModel(torch.nn.Module): def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2, ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250, center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False, scale_by_sigma=True, norm_by_sigma=True, use_second_order_repr=False, batch_norm=True, dynamic_max_cross=False, dropout=0.0, smooth_edges=False, odd_parity=False, separate_noise_schedule=False, lm_embedding_type=False, confidence_mode=False, confidence_dropout=0, confidence_no_batchnorm = False, asyncronous_noise_schedule=False, affinity_prediction=False, parallel=1, parallel_aggregators="mean max min std", num_confidence_outputs=1, atom_num_confidence_outputs=1, fixed_center_conv=False, no_aminoacid_identities=False, include_miscellaneous_atoms=False, differentiate_convolutions=True, tp_weights_layers=2, num_prot_emb_layers=0, reduce_pseudoscalars=False, embed_also_ligand=False, atom_confidence=False, sidechain_pred=False, depthwise_convolution=False, crop_beyond=None): super(AAModel, self).__init__() assert (not no_aminoacid_identities) or (lm_embedding_type is None), "no language model emb without identities" assert not sidechain_pred, "sidechain prediction not implemented/makes sense for all atom model" assert not depthwise_convolution, "depthwise convolution not implemented for all atom model" if parallel > 1: assert affinity_prediction self.t_to_sigma = t_to_sigma self.in_lig_edge_features = in_lig_edge_features sigma_embed_dim *= (3 if separate_noise_schedule else 1) self.sigma_embed_dim = sigma_embed_dim self.lig_max_radius = lig_max_radius self.rec_max_radius = rec_max_radius self.cross_max_distance = cross_max_distance self.dynamic_max_cross = dynamic_max_cross self.center_max_distance = center_max_distance self.distance_embed_dim = distance_embed_dim self.cross_distance_embed_dim = cross_distance_embed_dim self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax) self.ns, self.nv = ns, nv self.scale_by_sigma = scale_by_sigma self.norm_by_sigma = norm_by_sigma self.device = device self.no_torsion = no_torsion self.smooth_edges = smooth_edges self.odd_parity = odd_parity self.num_conv_layers = num_conv_layers self.timestep_emb_func = timestep_emb_func self.separate_noise_schedule = separate_noise_schedule self.confidence_mode = confidence_mode self.num_conv_layers = num_conv_layers self.num_prot_emb_layers = num_prot_emb_layers self.asyncronous_noise_schedule = asyncronous_noise_schedule self.affinity_prediction = affinity_prediction self.parallel, self.parallel_aggregators = parallel, parallel_aggregators.split(' ') self.fixed_center_conv = fixed_center_conv self.no_aminoacid_identities = no_aminoacid_identities self.differentiate_convolutions = differentiate_convolutions self.reduce_pseudoscalars = reduce_pseudoscalars self.atom_confidence = atom_confidence self.atom_num_confidence_outputs = atom_num_confidence_outputs self.crop_beyond = crop_beyond self.lm_embedding_type = lm_embedding_type if lm_embedding_type is None: lm_embedding_dim = 0 elif lm_embedding_type == "precomputed": lm_embedding_dim=1280 else: lm, alphabet = load_model_and_alphabet(lm_embedding_type) self.batch_converter = alphabet.get_batch_converter() lm.lm_head = torch.nn.Identity() lm.contact_head = torch.nn.Identity() lm_embedding_dim = lm.embed_dim self.lm = lm # embedding layers atom_encoder_class = AtomEncoder self.lig_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim) self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(),nn.Dropout(dropout),nn.Linear(ns, ns)) self.rec_sigma_embedding = nn.Sequential(nn.Linear(sigma_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns)) self.rec_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=0, lm_embedding_dim=lm_embedding_dim) self.rec_edge_embedding = nn.Sequential(nn.Linear(distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns)) self.atom_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_atom_feature_dims, sigma_embed_dim=0) self.atom_edge_embedding = nn.Sequential(nn.Linear(distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns)) self.lr_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns)) self.ar_edge_embedding = nn.Sequential(nn.Linear(distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns)) self.la_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns)) self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim) self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim) self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim) irrep_seq = get_irrep_seq(ns, nv, use_second_order_repr, reduce_pseudoscalars) assert not include_miscellaneous_atoms, "currently not supported" rec_emb_layers = [] for i in range(num_prot_emb_layers): in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)] out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)] layer = TensorProductConvLayer( in_irreps=in_irreps, sh_irreps=self.sh_irreps, out_irreps=out_irreps, n_edge_features=3 * ns, hidden_features=3 * ns, residual=True, batch_norm=batch_norm, dropout=dropout, faster=sh_lmax == 1 and not use_second_order_repr, tp_weights_layers=tp_weights_layers, edge_groups=1 if not differentiate_convolutions else 4, ) rec_emb_layers.append(layer) self.rec_emb_layers = nn.ModuleList(rec_emb_layers) self.embed_also_ligand = embed_also_ligand if embed_also_ligand: lig_emb_layers = [] for i in range(num_prot_emb_layers): in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)] out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)] layer = TensorProductConvLayer( in_irreps=in_irreps, sh_irreps=self.sh_irreps, out_irreps=out_irreps, n_edge_features=3 * ns, hidden_features=3 * ns, residual=True, batch_norm=batch_norm, dropout=dropout, faster=sh_lmax == 1 and not use_second_order_repr, tp_weights_layers=tp_weights_layers, edge_groups=1, ) lig_emb_layers.append(layer) self.lig_emb_layers = nn.ModuleList(lig_emb_layers) # convolutional layers conv_layers = [] for i in range(num_prot_emb_layers, num_prot_emb_layers + num_conv_layers): in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)] out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)] layer = TensorProductConvLayer( in_irreps=in_irreps, sh_irreps=self.sh_irreps, out_irreps=out_irreps, n_edge_features=3 * ns, hidden_features=3 * ns, residual=True, batch_norm=batch_norm, dropout=dropout, faster=sh_lmax == 1 and not use_second_order_repr, tp_weights_layers=tp_weights_layers, edge_groups=1 if not differentiate_convolutions else (3 if i == num_prot_emb_layers + num_conv_layers - 1 else 9), ) conv_layers.append(layer) self.conv_layers = nn.ModuleList(conv_layers) # confidence and affinity prediction layers if self.confidence_mode: if self.affinity_prediction: if self.parallel > 1: output_confidence_dim = 1 + ns else: output_confidence_dim = num_confidence_outputs + 1 else: output_confidence_dim = num_confidence_outputs input_size = ns + (nv if reduce_pseudoscalars else ns) if num_conv_layers + num_prot_emb_layers >= 3 else ns if self.atom_confidence: self.atom_confidence_predictor = nn.Sequential( nn.Linear(input_size, ns), nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), nn.ReLU(), nn.Dropout(confidence_dropout), nn.Linear(ns, ns), nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), nn.ReLU(), nn.Dropout(confidence_dropout), nn.Linear(ns, atom_num_confidence_outputs + ns) ) input_size = ns self.confidence_predictor = nn.Sequential( nn.Linear(input_size, ns), nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), nn.ReLU(), nn.Dropout(confidence_dropout), nn.Linear(ns, ns), nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), nn.ReLU(), nn.Dropout(confidence_dropout), nn.Linear(ns, output_confidence_dim) ) if self.parallel > 1: self.affinity_predictor = nn.Sequential( nn.Linear(len(self.parallel_aggregators) * ns, ns), nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), nn.ReLU(), nn.Dropout(confidence_dropout), nn.Linear(ns, ns), nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), nn.ReLU(), nn.Dropout(confidence_dropout), nn.Linear(ns, 1) ) else: # convolution for translational and rotational scores self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim) self.center_edge_embedding = nn.Sequential( nn.Linear(distance_embed_dim + sigma_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns) ) self.final_conv = TensorProductConvLayer( in_irreps=self.conv_layers[-1].out_irreps, sh_irreps=self.sh_irreps, out_irreps=f'2x1o + 2x1e' if not self.odd_parity else '1x1o + 1x1e', n_edge_features=2 * ns, residual=False, dropout=dropout, batch_norm=batch_norm ) self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1)) self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1)) if not no_torsion: # convolution for torsional score self.final_edge_embedding = nn.Sequential( nn.Linear(distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns) ) self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e") self.tor_bond_conv = TensorProductConvLayer( in_irreps=self.conv_layers[-1].out_irreps, sh_irreps=self.final_tp_tor.irreps_out, out_irreps=f'{ns}x0o + {ns}x0e' if not self.odd_parity else f'{ns}x0o', n_edge_features=3 * ns, residual=False, dropout=dropout, batch_norm=batch_norm ) self.tor_final_layer = nn.Sequential( nn.Linear(2 * ns if not self.odd_parity else ns, ns, bias=False), nn.Tanh(), nn.Dropout(dropout), nn.Linear(ns, 1, bias=False) ) def embedding(self, data): if not hasattr(data['receptor'], "rec_node_attr"): if self.lm_embedding_type not in [None, 'precomputed']: sequences = [s for l in data['receptor'].sequence for s in l] if isinstance(sequences[0], list): sequences = [s for l in sequences for s in l] sequences = [(i, s) for i, s in enumerate(sequences)] batch_labels, batch_strs, batch_tokens = self.batch_converter(sequences) out = self.lm(batch_tokens.to(data['receptor'].x.device), repr_layers=[self.lm.num_layers], return_contacts=False) rec_lm_emb = torch.cat([t[:len(sequences[i][1])] for i, t in enumerate(out['representations'][self.lm.num_layers])], dim=0) data['receptor'].x = torch.cat([data['receptor'].x, rec_lm_emb], dim=-1) rec_node_attr, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.build_rec_conv_graph(data) rec_node_attr = self.rec_node_embedding(rec_node_attr) rec_edge_attr = self.rec_edge_embedding(rec_edge_attr) atom_node_attr, atom_edge_attr, atom_edge_sh, atom_edge_weight = self.build_atom_conv_graph(data) atom_node_attr = self.atom_node_embedding(atom_node_attr) atom_edge_attr = self.atom_edge_embedding(atom_edge_attr) ar_edge_attr, ar_edge_sh, ar_edge_weight = self.build_cross_rec_conv_graph(data) ar_edge_attr = self.ar_edge_embedding(ar_edge_attr) rec_edge_index = data['receptor', 'receptor'].edge_index.clone() atom_edge_index = data['atom', 'atom'].edge_index.clone() ar_edge_index = data['atom', 'receptor'].edge_index.clone() node_attr = torch.cat([rec_node_attr, atom_node_attr], dim=0) ar_edge_index[0] = ar_edge_index[0] + len(rec_node_attr) edge_index = torch.cat([rec_edge_index, ar_edge_index, atom_edge_index + len(rec_node_attr), torch.flip(ar_edge_index, dims=[0])], dim=1) edge_attr = torch.cat([rec_edge_attr, ar_edge_attr, atom_edge_attr, ar_edge_attr], dim=0) edge_sh = torch.cat([rec_edge_sh, ar_edge_sh, atom_edge_sh, ar_edge_sh], dim=0) edge_weight = torch.cat([rec_edge_weight, ar_edge_weight, atom_edge_weight, ar_edge_weight], dim=0) \ if torch.is_tensor(rec_edge_weight) else torch.ones((len(edge_index[0]), 1), device=edge_index.device) s1, s2, s3 = len(rec_edge_index[0]), len(rec_edge_index[0]) + len(ar_edge_index[0]), len(rec_edge_index[0]) + len(ar_edge_index[0]) + len(atom_edge_index[0]) for l in range(len(self.rec_emb_layers)): edge_attr_ = torch.cat( [edge_attr, node_attr[edge_index[0], :self.ns], node_attr[edge_index[1], :self.ns]], -1) if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2], edge_attr_[s2:s3], edge_attr_[s3:]] node_attr = self.rec_emb_layers[l](node_attr, edge_index, edge_attr_, edge_sh, edge_weight=edge_weight) data['receptor'].rec_node_attr = node_attr[:len(rec_node_attr)] data['receptor', 'receptor'].rec_edge_attr = rec_edge_attr data['receptor', 'receptor'].edge_sh = rec_edge_sh data['receptor', 'receptor'].edge_weight = rec_edge_weight data['atom'].atom_node_attr = node_attr[len(rec_node_attr):] data['atom', 'atom'].atom_edge_attr = atom_edge_attr data['atom', 'atom'].edge_sh = atom_edge_sh data['atom', 'atom'].edge_weight = atom_edge_weight data['atom', 'receptor'].edge_attr = ar_edge_attr data['atom', 'receptor'].edge_sh = ar_edge_sh data['atom', 'receptor'].edge_weight = ar_edge_weight # receptor embedding rec_sigma_emb = self.rec_sigma_embedding(self.timestep_emb_func(data.complex_t['tr'])) rec_node_attr = data['receptor'].rec_node_attr + 0 rec_node_attr[:, :self.ns] = rec_node_attr[:, :self.ns] + rec_sigma_emb[data['receptor'].batch] rec_edge_attr = data['receptor', 'receptor'].rec_edge_attr + rec_sigma_emb[data['receptor'].batch[data['receptor', 'receptor'].edge_index[0]]] # atom embedding atom_node_attr = data['atom'].atom_node_attr + 0 atom_node_attr[:, :self.ns] = atom_node_attr[:, :self.ns] + rec_sigma_emb[data['atom'].batch] atom_edge_attr = data['atom', 'atom'].atom_edge_attr + rec_sigma_emb[data['atom'].batch[data['atom', 'atom'].edge_index[0]]] # atom-receptor embedding ar_edge_attr = data['atom', 'receptor'].edge_attr + rec_sigma_emb[data['atom'].batch[data['atom', 'receptor'].edge_index[0]]] # ligand embedding lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.build_lig_conv_graph(data) lig_node_attr = self.lig_node_embedding(lig_node_attr) lig_edge_attr = self.lig_edge_embedding(lig_edge_attr) if self.embed_also_ligand: for l in range(len(self.lig_emb_layers)): edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_edge_index[0], :self.ns], lig_node_attr[lig_edge_index[1], :self.ns]], -1) lig_node_attr = self.lig_emb_layers[l](lig_node_attr, lig_edge_index, edge_attr_, lig_edge_sh, edge_weight=lig_edge_weight) else: lig_node_attr = F.pad(lig_node_attr, (0, rec_node_attr.shape[-1] - lig_node_attr.shape[-1])) return lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, \ rec_node_attr, data['receptor', 'receptor'].edge_index, rec_edge_attr, data['receptor', 'receptor'].edge_sh, data['receptor', 'receptor'].edge_weight, \ atom_node_attr, data['atom', 'atom'].edge_index, atom_edge_attr, data['atom', 'atom'].edge_sh, data['atom', 'atom'].edge_weight, \ data['atom', 'receptor'].edge_index, ar_edge_attr, data['atom', 'receptor'].edge_sh, data['atom', 'receptor'].edge_weight def forward(self, data): if self.crop_beyond is not None: # TODO missing filtering atoms raise NotImplementedError ligand_pos = data['ligand'].pos receptor_pos = data['receptor'].pos residues_to_keep = torch.any(torch.sum((ligand_pos.unsqueeze(0) - receptor_pos.unsqueeze(1)) ** 2, -1) < self.crop_beyond ** 2, dim=1) data['receptor'].pos = data['receptor'].pos[residues_to_keep] data['receptor'].x = data['receptor'].x[residues_to_keep] data['receptor'].side_chain_vecs = data['receptor'].side_chain_vecs[residues_to_keep] data['receptor', 'rec_contact', 'receptor'].edge_index = subgraph(residues_to_keep, data['receptor', 'rec_contact', 'receptor'].edge_index, relabel_nodes=True)[0] if self.no_aminoacid_identities: data['receptor'].x = data['receptor'].x * 0 if not self.confidence_mode: tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]) else: tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']] lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, rec_node_attr, \ rec_edge_index, rec_edge_attr, rec_edge_sh, rec_edge_weight,\ atom_node_attr, atom_edge_index, atom_edge_attr, atom_edge_sh, atom_edge_weight, \ ar_edge_index, ar_edge_attr, ar_edge_sh, ar_edge_weight = self.embedding(data) # build lig cross graph cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1) if self.dynamic_max_cross else self.cross_max_distance lr_edge_index, lr_edge_attr, lr_edge_sh, lr_edge_weight, la_edge_index, la_edge_attr, \ la_edge_sh, la_edge_weight = self.build_cross_lig_conv_graph(data, cross_cutoff) lr_edge_attr= self.lr_edge_embedding(lr_edge_attr) la_edge_attr = self.la_edge_embedding(la_edge_attr) n_lig, n_rec = len(lig_node_attr), len(rec_node_attr) node_attr = torch.cat([lig_node_attr, rec_node_attr, atom_node_attr], dim=0) rec_edge_index, atom_edge_index, lr_edge_index, la_edge_index, ar_edge_index = rec_edge_index.clone(), atom_edge_index.clone(), lr_edge_index.clone(), la_edge_index.clone(), ar_edge_index.clone() rec_edge_index[0], rec_edge_index[1] = rec_edge_index[0] + n_lig, rec_edge_index[1] + n_lig atom_edge_index[0], atom_edge_index[1] = atom_edge_index[0] + n_lig + n_rec, atom_edge_index[1] + n_lig + n_rec lr_edge_index[1] = lr_edge_index[1] + n_lig la_edge_index[1] = la_edge_index[1] + n_lig + n_rec ar_edge_index[0], ar_edge_index[1] = ar_edge_index[0] + n_lig + n_rec, ar_edge_index[1] + n_lig edge_index = torch.cat([lig_edge_index, lr_edge_index, la_edge_index, rec_edge_index, torch.flip(lr_edge_index, dims=[0]), torch.flip(ar_edge_index, dims=[0]), atom_edge_index, torch.flip(la_edge_index, dims=[0]), ar_edge_index], dim=1) edge_attr = torch.cat([lig_edge_attr, lr_edge_attr, la_edge_attr, rec_edge_attr, lr_edge_attr, ar_edge_attr, atom_edge_attr, la_edge_attr, ar_edge_attr], dim=0) edge_sh = torch.cat([lig_edge_sh, lr_edge_sh, la_edge_sh, rec_edge_sh, lr_edge_sh, ar_edge_sh, atom_edge_sh, la_edge_sh, ar_edge_sh], dim=0) edge_weight = torch.cat([lig_edge_weight, lr_edge_weight, la_edge_weight, rec_edge_weight, lr_edge_weight, ar_edge_weight, atom_edge_weight, la_edge_weight, ar_edge_weight], dim=0) if torch.is_tensor(lig_edge_weight) else torch.ones((len(edge_index[0]), 1), device=edge_index.device) s1, s2, s3, s4, s5, s6, s7, s8, _ = tuple(np.cumsum(list(map(len, [lig_edge_attr, lr_edge_attr, la_edge_attr, rec_edge_attr, lr_edge_attr, ar_edge_attr, atom_edge_attr, la_edge_attr, ar_edge_attr]))).tolist()) for l in range(len(self.conv_layers)): if l < len(self.conv_layers) - 1: edge_attr_ = torch.cat([edge_attr, node_attr[edge_index[0], :self.ns], node_attr[edge_index[1], :self.ns]], -1) if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2], edge_attr_[s2:s3], edge_attr_[s3:s4], edge_attr_[s4:s5], edge_attr_[s5:s6], edge_attr_[s6:s7], edge_attr_[s7:s8], edge_attr_[s8:]] node_attr = self.conv_layers[l](node_attr, edge_index, edge_attr_, edge_sh, edge_weight=edge_weight) else: edge_attr_ = torch.cat([edge_attr[:s3], node_attr[edge_index[0, :s3], :self.ns], node_attr[edge_index[1, :s3], :self.ns]], -1) if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2], edge_attr_[s2:s3]] node_attr = self.conv_layers[l](node_attr, edge_index[:, :s3], edge_attr_, edge_sh[:s3], edge_weight=edge_weight[:s3]) lig_node_attr = node_attr[:len(lig_node_attr)] # confidence and affinity prediction if self.confidence_mode: scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns], lig_node_attr[:,-(self.nv if self.reduce_pseudoscalars else self.ns):] ], dim=1) \ if self.num_conv_layers + self.num_prot_emb_layers >= 3 else lig_node_attr[:,:self.ns] if self.atom_confidence: scalar_lig_attr = self.atom_confidence_predictor(scalar_lig_attr) atom_confidence = scalar_lig_attr[:, :self.atom_num_confidence_outputs] scalar_lig_attr = scalar_lig_attr[:, self.atom_num_confidence_outputs:] else: atom_confidence = torch.zeros((len(lig_node_attr),), device=lig_node_attr.device) confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch, dim=0)).squeeze(dim=-1) if self.parallel > 1: confidence, affinity = confidence[:, 0], confidence[:, 1:] confidence = confidence.reshape(data.num_graphs, self.parallel) affinity = affinity.reshape(data.num_graphs, self.parallel, -1) affinity = torch.cat([AGGREGATORS[agg](affinity) for agg in self.parallel_aggregators], dim=-1) affinity = self.affinity_predictor(affinity).squeeze(dim=-1) confidence = confidence, affinity return confidence, atom_confidence assert self.parallel == 1 # compute translational and rotational score vectors center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data) center_edge_attr = self.center_edge_embedding(center_edge_attr) if self.fixed_center_conv: center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[1], :self.ns]], -1) else: center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1) global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs) tr_pred = global_pred[:, :3] + (global_pred[:, 6:9] if not self.odd_parity else 0) rot_pred = global_pred[:, 3:6] + (global_pred[:, 9:] if not self.odd_parity else 0) if self.separate_noise_schedule: data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']], dim=1) elif self.asyncronous_noise_schedule: data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t']) else: # tr rot and tor noise is all the same in this case data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr']) # adjust the magniture of the score vectors tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1) tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1)) rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1) rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1)) if self.scale_by_sigma: tr_pred = tr_pred / tr_sigma.unsqueeze(1) rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device) if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0,device=self.device), None # torsional components tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data) tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]] tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]] tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component') tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]]) tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns], tor_bond_attr[tor_edge_index[0], :self.ns]], -1) tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh, out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight) tor_pred = self.tor_final_layer(tor_pred).squeeze(1) edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask] if self.scale_by_sigma: tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float() .to(data['ligand'].x.device)) return tr_pred, rot_pred, tor_pred, None def get_edge_weight(self, edge_vec, max_norm): if self.smooth_edges: normalised_norm = torch.clip(edge_vec.norm(dim=-1) * np.pi / max_norm, max=np.pi) return 0.5 * (torch.cos(normalised_norm) + 1.0).unsqueeze(-1) return 1.0 def build_lig_conv_graph(self, data): # build the graph between ligand atoms if self.separate_noise_schedule: data['ligand'].node_sigma_emb = torch.cat( [self.timestep_emb_func(data['ligand'].node_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']], dim=1) elif self.asyncronous_noise_schedule: data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['t']) else: data['ligand'].node_sigma_emb = self.timestep_emb_func( data['ligand'].node_t['tr']) # tr rot and tor noise is all the same if self.parallel == 1: radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch) else: batches = torch.zeros(data.num_graphs, device=data['ligand'].x.device).long() batches = batches.index_add(0, data['ligand'].batch, torch.ones(len(data['ligand'].batch), device=data['ligand'].x.device).long()) outer_batches = data.num_graphs b = [torch.ones(batches[i].item()//self.parallel, device=data['ligand'].x.device).long() * (self.parallel * i + j) for i in range(outer_batches) for j in range(self.parallel)] data['ligand'].batch_parallel = torch.cat(b) radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch_parallel) edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long() edge_attr = torch.cat([ data['ligand', 'ligand'].edge_attr, torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device) ], 0) edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()] edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1) node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1) src, dst = edge_index edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()] edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1)) edge_attr = torch.cat([edge_attr, edge_length_emb], 1) edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius) return node_attr, edge_index, edge_attr, edge_sh, edge_weight def build_rec_conv_graph(self, data): # build the graph between receptor residues node_attr = data['receptor'].x # this assumes the edges were already created in preprocessing since protein's structure is fixed edge_index = data['receptor', 'receptor'].edge_index src, dst = edge_index edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()] edge_attr = self.rec_distance_expansion(edge_vec.norm(dim=-1)) edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') edge_weight = self.get_edge_weight(edge_vec, self.rec_max_radius) return node_attr, edge_attr, edge_sh, edge_weight def build_atom_conv_graph(self, data): # build the graph between receptor atoms node_attr = data['atom'].x # this assumes the edges were already created in preprocessing since protein's structure is fixed edge_index = data['atom', 'atom'].edge_index src, dst = edge_index edge_vec = data['atom'].pos[dst.long()] - data['atom'].pos[src.long()] edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1)) edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius) return node_attr, edge_attr, edge_sh, edge_weight def build_cross_lig_conv_graph(self, data, lr_cross_distance_cutoff): # build the cross edges between ligand atoms and receptor residues + atoms # LIGAND to RECEPTOR if torch.is_tensor(lr_cross_distance_cutoff): # different cutoff for every graph lr_edge_index = radius(data['receptor'].pos / lr_cross_distance_cutoff[data['receptor'].batch], data['ligand'].pos / lr_cross_distance_cutoff[data['ligand'].batch], 1, data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) else: lr_edge_index = radius(data['receptor'].pos, data['ligand'].pos, lr_cross_distance_cutoff, data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) lr_edge_vec = data['receptor'].pos[lr_edge_index[1].long()] - data['ligand'].pos[lr_edge_index[0].long()] lr_edge_length_emb = self.cross_distance_expansion(lr_edge_vec.norm(dim=-1)) lr_edge_sigma_emb = data['ligand'].node_sigma_emb[lr_edge_index[0].long()] lr_edge_attr = torch.cat([lr_edge_sigma_emb, lr_edge_length_emb], 1) lr_edge_sh = o3.spherical_harmonics(self.sh_irreps, lr_edge_vec, normalize=True, normalization='component') cutoff_d = lr_cross_distance_cutoff[data['ligand'].batch[lr_edge_index[0]]].squeeze() \ if torch.is_tensor(lr_cross_distance_cutoff) else lr_cross_distance_cutoff lr_edge_weight = self.get_edge_weight(lr_edge_vec, cutoff_d) # LIGAND to ATOM la_edge_index = radius(data['atom'].pos, data['ligand'].pos, self.lig_max_radius, data['atom'].batch, data['ligand'].batch, max_num_neighbors=10000) la_edge_vec = data['atom'].pos[la_edge_index[1].long()] - data['ligand'].pos[la_edge_index[0].long()] la_edge_length_emb = self.lig_distance_expansion(la_edge_vec.norm(dim=-1)) la_edge_sigma_emb = data['ligand'].node_sigma_emb[la_edge_index[0].long()] la_edge_attr = torch.cat([la_edge_sigma_emb, la_edge_length_emb], 1) la_edge_sh = o3.spherical_harmonics(self.sh_irreps, la_edge_vec, normalize=True, normalization='component') la_edge_weight = self.get_edge_weight(la_edge_vec, self.lig_max_radius) return lr_edge_index, lr_edge_attr, lr_edge_sh, lr_edge_weight, la_edge_index, la_edge_attr, \ la_edge_sh, la_edge_weight def build_cross_rec_conv_graph(self, data): # build the cross edges between ligan atoms, receptor residues and receptor atoms # ATOM to RECEPTOR ar_edge_index = data['atom', 'receptor'].edge_index ar_edge_vec = data['receptor'].pos[ar_edge_index[1].long()] - data['atom'].pos[ar_edge_index[0].long()] ar_edge_attr = self.rec_distance_expansion(ar_edge_vec.norm(dim=-1)) ar_edge_sh = o3.spherical_harmonics(self.sh_irreps, ar_edge_vec, normalize=True, normalization='component') ar_edge_weight = 1 return ar_edge_attr, ar_edge_sh, ar_edge_weight def build_center_conv_graph(self, data): # build the filter for the convolution of the center with the ligand atoms # for translational and rotational score edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0) center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device) center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos) center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1) edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]] edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1)) edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()] edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1) edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') return edge_index, edge_attr, edge_sh def build_bond_conv_graph(self, data): # build graph for the pseudotorque layer bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long() bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2 bond_batch = data['ligand'].batch[bonds[0]] edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch) edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]] edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1)) edge_attr = self.final_edge_embedding(edge_attr) edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius) return bonds, edge_index, edge_attr, edge_sh, edge_weight