import copy, time import numpy as np from collections import defaultdict from rdkit import Chem, RDLogger from rdkit.Chem import AllChem, rdMolTransforms from rdkit import Geometry import networkx as nx from scipy.optimize import differential_evolution RDLogger.DisableLog('rdApp.*') """ Conformer matching routines from Torsional Diffusion """ def GetDihedral(conf, atom_idx): return rdMolTransforms.GetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3]) def SetDihedral(conf, atom_idx, new_vale): rdMolTransforms.SetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3], new_vale) def apply_changes(mol, values, rotatable_bonds, conf_id): opt_mol = copy.copy(mol) [SetDihedral(opt_mol.GetConformer(conf_id), rotatable_bonds[r], values[r]) for r in range(len(rotatable_bonds))] return opt_mol def optimize_rotatable_bonds(mol, true_mol, rotatable_bonds, probe_id=-1, ref_id=-1, seed=0, popsize=15, maxiter=500, mutation=(0.5, 1), recombination=0.8): opt = OptimizeConformer(mol, true_mol, rotatable_bonds, seed=seed, probe_id=probe_id, ref_id=ref_id) max_bound = [np.pi] * len(opt.rotatable_bonds) min_bound = [-np.pi] * len(opt.rotatable_bonds) bounds = (min_bound, max_bound) bounds = list(zip(bounds[0], bounds[1])) # Optimize conformations result = differential_evolution(opt.score_conformation, bounds, maxiter=maxiter, popsize=popsize, mutation=mutation, recombination=recombination, disp=False, seed=seed) opt_mol = apply_changes(opt.mol, result['x'], opt.rotatable_bonds, conf_id=probe_id) return opt_mol class OptimizeConformer: def __init__(self, mol, true_mol, rotatable_bonds, probe_id=-1, ref_id=-1, seed=None): super(OptimizeConformer, self).__init__() if seed: np.random.seed(seed) self.rotatable_bonds = rotatable_bonds self.mol = mol self.true_mol = true_mol self.probe_id = probe_id self.ref_id = ref_id def score_conformation(self, values): for i, r in enumerate(self.rotatable_bonds): SetDihedral(self.mol.GetConformer(self.probe_id), r, values[i]) return AllChem.AlignMol(self.mol, self.true_mol, self.probe_id, self.ref_id) def get_torsion_angles(mol): torsions_list = [] G = nx.Graph() for i, atom in enumerate(mol.GetAtoms()): G.add_node(i) nodes = set(G.nodes()) for bond in mol.GetBonds(): start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() G.add_edge(start, end) for e in G.edges(): G2 = copy.deepcopy(G) G2.remove_edge(*e) if nx.is_connected(G2): continue l = list(sorted(nx.connected_components(G2), key=len)[0]) if len(l) < 2: continue n0 = list(G2.neighbors(e[0])) n1 = list(G2.neighbors(e[1])) torsions_list.append( (n0[0], e[0], e[1], n1[0]) ) return torsions_list