import streamlit as st from transformers import pipeline # Load the text classification model pipeline classifier = pipeline("text-classification", model='lguoao123/model2', return_all_scores=True) translate = pipe = pipeline("text2text-generation", model="jieshenai/zh_en_translation") # Streamlit application title st.title("Financial News Sentiment Classification") st.write("Classification") # Text input for user to enter the text to classify text = st.text_area("Enter the financial news to classify", "") # Perform text classification when the user clicks the "Classify" button if st.button("Classify"): translate_text = translate(text)[0]['generated_text'] # Perform text classification on the input text results = classifier(translate_text)[0] # Display the classification result max_score = float('-inf') max_label = '' for result in results: if result['score'] > max_score: max_score = result['score'] max_label = result['label'] st.write("Text:", translate_text) st.write("Label:", max_label) st.write("Score:", max_score)