Spaces:
Running
Running
add conversational memory
Browse files- streamlit_app.py +22 -2
streamlit_app.py
CHANGED
@@ -6,6 +6,7 @@ from tempfile import NamedTemporaryFile
|
|
6 |
import dotenv
|
7 |
from grobid_quantities.quantities import QuantitiesAPI
|
8 |
from langchain.llms.huggingface_hub import HuggingFaceHub
|
|
|
9 |
|
10 |
dotenv.load_dotenv(override=True)
|
11 |
|
@@ -51,6 +52,9 @@ if 'ner_processing' not in st.session_state:
|
|
51 |
if 'uploaded' not in st.session_state:
|
52 |
st.session_state['uploaded'] = False
|
53 |
|
|
|
|
|
|
|
54 |
st.set_page_config(
|
55 |
page_title="Scientific Document Insights Q/A",
|
56 |
page_icon="π",
|
@@ -67,6 +71,11 @@ def new_file():
|
|
67 |
st.session_state['loaded_embeddings'] = None
|
68 |
st.session_state['doc_id'] = None
|
69 |
st.session_state['uploaded'] = True
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
# @st.cache_resource
|
@@ -169,7 +178,7 @@ with st.sidebar:
|
|
169 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded'])
|
170 |
|
171 |
st.markdown(
|
172 |
-
":warning: Mistral and Zephyr are
|
173 |
|
174 |
if (model == 'mistral-7b-instruct-v0.1' or model == 'zephyr-7b-beta') and model not in st.session_state['api_keys']:
|
175 |
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
@@ -206,6 +215,11 @@ with st.sidebar:
|
|
206 |
# else:
|
207 |
# is_api_key_provided = st.session_state['api_key']
|
208 |
|
|
|
|
|
|
|
|
|
|
|
209 |
st.title("π Scientific Document Insights Q/A")
|
210 |
st.subheader("Upload a scientific article in PDF, ask questions, get insights.")
|
211 |
|
@@ -298,7 +312,8 @@ if st.session_state.loaded_embeddings and question and len(question) > 0 and st.
|
|
298 |
elif mode == "LLM":
|
299 |
with st.spinner("Generating response..."):
|
300 |
_, text_response = st.session_state['rqa'][model].query_document(question, st.session_state.doc_id,
|
301 |
-
context_size=context_size
|
|
|
302 |
|
303 |
if not text_response:
|
304 |
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
|
@@ -317,5 +332,10 @@ if st.session_state.loaded_embeddings and question and len(question) > 0 and st.
|
|
317 |
st.write(text_response)
|
318 |
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
|
319 |
|
|
|
|
|
|
|
|
|
|
|
320 |
elif st.session_state.loaded_embeddings and st.session_state.doc_id:
|
321 |
play_old_messages()
|
|
|
6 |
import dotenv
|
7 |
from grobid_quantities.quantities import QuantitiesAPI
|
8 |
from langchain.llms.huggingface_hub import HuggingFaceHub
|
9 |
+
from langchain.memory import ConversationBufferWindowMemory
|
10 |
|
11 |
dotenv.load_dotenv(override=True)
|
12 |
|
|
|
52 |
if 'uploaded' not in st.session_state:
|
53 |
st.session_state['uploaded'] = False
|
54 |
|
55 |
+
if 'memory' not in st.session_state:
|
56 |
+
st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
|
57 |
+
|
58 |
st.set_page_config(
|
59 |
page_title="Scientific Document Insights Q/A",
|
60 |
page_icon="π",
|
|
|
71 |
st.session_state['loaded_embeddings'] = None
|
72 |
st.session_state['doc_id'] = None
|
73 |
st.session_state['uploaded'] = True
|
74 |
+
st.session_state['memory'].clear()
|
75 |
+
|
76 |
+
|
77 |
+
def clear_memory():
|
78 |
+
st.session_state['memory'].clear()
|
79 |
|
80 |
|
81 |
# @st.cache_resource
|
|
|
178 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded'])
|
179 |
|
180 |
st.markdown(
|
181 |
+
":warning: Mistral and Zephyr are **FREE** to use. Requests might fail anytime. Use at your own risk. :warning: ")
|
182 |
|
183 |
if (model == 'mistral-7b-instruct-v0.1' or model == 'zephyr-7b-beta') and model not in st.session_state['api_keys']:
|
184 |
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
|
|
215 |
# else:
|
216 |
# is_api_key_provided = st.session_state['api_key']
|
217 |
|
218 |
+
st.button(
|
219 |
+
'Reset chat memory.',
|
220 |
+
on_click=clear_memory(),
|
221 |
+
help="Clear the conversational memory. Currently implemented to retrain the 4 most recent messages.")
|
222 |
+
|
223 |
st.title("π Scientific Document Insights Q/A")
|
224 |
st.subheader("Upload a scientific article in PDF, ask questions, get insights.")
|
225 |
|
|
|
312 |
elif mode == "LLM":
|
313 |
with st.spinner("Generating response..."):
|
314 |
_, text_response = st.session_state['rqa'][model].query_document(question, st.session_state.doc_id,
|
315 |
+
context_size=context_size,
|
316 |
+
memory=st.session_state.memory)
|
317 |
|
318 |
if not text_response:
|
319 |
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
|
|
|
332 |
st.write(text_response)
|
333 |
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
|
334 |
|
335 |
+
for id in range(0, len(st.session_state.messages), 2):
|
336 |
+
question = st.session_state.messages[id]['content']
|
337 |
+
answer = st.session_state.messages[id + 1]['content']
|
338 |
+
st.session_state.memory.save_context({"input": question}, {"output": answer})
|
339 |
+
|
340 |
elif st.session_state.loaded_embeddings and st.session_state.doc_id:
|
341 |
play_old_messages()
|