import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline speaker_embedding_path = "./speaker_embedding.npy" replacements = [ ("&", "og"), ("\r", " "), ("´", ""), ("\\", ""), ("¨", " "), ("Å", "AA"), ("Æ", "AE"), ("É", "E"), ("Ö", "OE"), ("Ø", "OE"), ("á", "a"), ("ä", "ae"), ("å", "aa"), ("è", "e"), ("î", "i"), ("ô", "oe"), ("ö", "oe"), ("ø", "oe"), ("ü", "y"), ] def replace_danish_letters(text): for src, dst in replacements: text = text.replace(src, dst) return text device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # load text-to-speech checkpoint and speaker embeddings processor = SpeechT5Processor.from_pretrained("JackismyShephard/speecht5_tts-finetuned-nst-da") model = SpeechT5ForTextToSpeech.from_pretrained("JackismyShephard/speecht5_tts-finetuned-nst-da").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) speaker_embedding = np.load(speaker_embedding_path) speaker_embeddings = torch.tensor(speaker_embedding).unsqueeze(0) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "da"}) return outputs["text"] def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) translated_text = replace_danish_letters(translated_text) print(translated_text) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model fine-tuned by [JackismyShephard](https://huggingface.co/JackismyShephard) for Danish for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["microphone"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["upload"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()