Spaces:
Sleeping
Sleeping
Commit
·
3eda55a
1
Parent(s):
c419dfc
Upload 2 files
Browse files- last_0603_92.pth +3 -0
- model_fasterrcnn.py +77 -0
last_0603_92.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4dc05f2a61959c1a0e91e1381e461638b4c5ff872f07d0fc383c5425b0e2871b
|
| 3 |
+
size 107986969
|
model_fasterrcnn.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
# import torch.nn.utils.prune as prune
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import torchvision.models as models
|
| 7 |
+
import torchvision
|
| 8 |
+
# from torchsummary import summary
|
| 9 |
+
|
| 10 |
+
class MobileNetV2FeatureExtractor(nn.Module):
|
| 11 |
+
def __init__(self):
|
| 12 |
+
super(MobileNetV2FeatureExtractor, self).__init__()
|
| 13 |
+
self.model = torchvision.models.detection.fasterrcnn_resnet50_fpn_v2(pretrained=False)
|
| 14 |
+
|
| 15 |
+
for param in self.model.parameters():
|
| 16 |
+
param.requires_grad = True
|
| 17 |
+
self.model = self.model.backbone
|
| 18 |
+
|
| 19 |
+
def forward(self, x):
|
| 20 |
+
return self.model(x)
|
| 21 |
+
class GlobalAvgPool2D(nn.Module):
|
| 22 |
+
def __init__(self):
|
| 23 |
+
super(GlobalAvgPool2D, self).__init__()
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
tensor = x['0']
|
| 27 |
+
return torch.mean(tensor.view(tensor.size(0), tensor.size(1), -1), dim=2)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class LDRNet_fasterrcnn(nn.Module):
|
| 31 |
+
def __init__(self, points_size=100, classification_list=[1]):
|
| 32 |
+
super(LDRNet_fasterrcnn, self).__init__()
|
| 33 |
+
|
| 34 |
+
self.points_size = points_size
|
| 35 |
+
self.classification_list = classification_list
|
| 36 |
+
|
| 37 |
+
self.backbone = MobileNetV2FeatureExtractor()
|
| 38 |
+
if len(classification_list) > 0:
|
| 39 |
+
class_size = sum(self.classification_list)
|
| 40 |
+
else:
|
| 41 |
+
class_size = 0
|
| 42 |
+
self.global_pool = GlobalAvgPool2D()
|
| 43 |
+
# self.dropout = nn.Dropout(p=0.3)
|
| 44 |
+
self.corner = nn.Linear(256, 8)
|
| 45 |
+
self.border = nn.Linear(256, (points_size - 4) * 2)
|
| 46 |
+
self.cls = nn.Linear(256, class_size + len(self.classification_list))
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
x = self.backbone(x)
|
| 50 |
+
x = self.global_pool(x)
|
| 51 |
+
# x = self.dropout(x)
|
| 52 |
+
corner_output = self.corner(x)
|
| 53 |
+
border_output = self.border(x)
|
| 54 |
+
cls_output = self.cls(x)
|
| 55 |
+
return corner_output, border_output, cls_output
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
import torch
|
| 58 |
+
# from torchsummary import summary
|
| 59 |
+
xx = torch.zeros((1, 3, 224, 224))
|
| 60 |
+
model = LDRNet_fasterrcnn()
|
| 61 |
+
print(model)
|
| 62 |
+
y = model(xx)
|
| 63 |
+
for name, module in model.named_modules():
|
| 64 |
+
if isinstance(module, torch.nn.Conv2d):
|
| 65 |
+
prune.l1_unstructured(module, name='weight', amount=0.2)
|
| 66 |
+
elif isinstance(module, torch.nn.Linear):
|
| 67 |
+
prune.l1_unstructured(module, name='weight', amount=0.4)
|
| 68 |
+
# print(y[0].detach().numpy()[0])
|
| 69 |
+
# summary(model,input_size=(3, 224, 224))
|
| 70 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 71 |
+
total_trainable_params = sum(
|
| 72 |
+
p.numel() for p in model.parameters() if p.requires_grad
|
| 73 |
+
)
|
| 74 |
+
print(f"[INFO]: {total_params:,} total parameters.")
|
| 75 |
+
print(f"[INFO]: {total_trainable_params:,} trainable parameters.")
|
| 76 |
+
|
| 77 |
+
|