Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,11 +8,10 @@ from facenet_pytorch import MTCNN
|
|
8 |
from io import BytesIO
|
9 |
import logging
|
10 |
|
11 |
-
logging.basicConfig(level=logging.DEBUG)
|
12 |
-
|
13 |
# Configuración
|
|
|
14 |
device = torch.device("cpu")
|
15 |
-
CANVAS_SIZE = (
|
16 |
|
17 |
# Modelo de envejecimiento
|
18 |
class AgingModel(torch.nn.Module):
|
@@ -32,42 +31,49 @@ class AgingModel(torch.nn.Module):
|
|
32 |
x = x * (1 + age_factor / 100.0)
|
33 |
return torch.clamp(x, 0, 1)
|
34 |
|
|
|
35 |
model = AgingModel().to(device)
|
36 |
model.eval()
|
37 |
-
mtcnn = MTCNN(image_size=
|
38 |
|
39 |
def resize_to_canvas(image, canvas_size=CANVAS_SIZE):
|
|
|
40 |
img = image.convert("RGB")
|
41 |
-
img
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
def align_and_preprocess(image):
|
|
|
45 |
logging.debug("Starting face detection")
|
46 |
if isinstance(image, np.ndarray):
|
47 |
img = Image.fromarray(image).convert("RGB")
|
48 |
elif isinstance(image, Image.Image):
|
49 |
img = image.convert("RGB")
|
50 |
else:
|
51 |
-
return None, f"
|
52 |
|
53 |
detected_face, _ = mtcnn.detect(img)
|
54 |
-
logging.debug(f"
|
55 |
if detected_face is None:
|
56 |
-
return None, "No
|
57 |
|
58 |
box = detected_face[0].astype(int)
|
59 |
face_img = img.crop((box[0], box[1], box[2], box[3]))
|
60 |
|
61 |
transform = transforms.Compose([
|
62 |
-
transforms.Resize((
|
63 |
transforms.ToTensor()
|
64 |
])
|
65 |
return transform(face_img).unsqueeze(0).to(device), None
|
66 |
|
67 |
def generate_aged_image(input_image, target_age):
|
68 |
-
|
|
|
69 |
if input_image is None:
|
70 |
-
return None, "
|
71 |
|
72 |
input_image = resize_to_canvas(input_image)
|
73 |
input_tensor, error = align_and_preprocess(input_image)
|
@@ -76,46 +82,50 @@ def generate_aged_image(input_image, target_age):
|
|
76 |
|
77 |
with torch.no_grad():
|
78 |
output = model(input_tensor, target_age)
|
79 |
-
logging.debug(f"
|
80 |
|
81 |
output_image = output.squeeze().permute(1, 2, 0).cpu().numpy()
|
82 |
output_image = np.clip(output_image * 255, 0, 255).astype(np.uint8)
|
83 |
|
84 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
|
85 |
gray = cv2.cvtColor(output_image, cv2.COLOR_BGR2GRAY)
|
86 |
-
edges = cv2.Canny(gray,
|
87 |
edges = cv2.dilate(edges, None, iterations=1)
|
88 |
-
output_image[edges > 0] = output_image[edges > 0] * 0.6 #
|
89 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
90 |
|
91 |
output_image = output_image.astype(np.float32)
|
92 |
-
output_image = output_image * (1 - target_age / 300.0)
|
93 |
-
output_image[:, :, 0] = np.clip(output_image[:, :, 0] * 0.95, 0, 255) # Skin yellowing
|
94 |
-
output_image[:, :, 1] = np.clip(output_image[:, :, 1] * 1.05, 0, 255)
|
95 |
-
output_image[:, :, 2] = np.clip(output_image[:, :, 2] * 1.1, 0, 255)
|
96 |
-
output_image = np.clip(output_image, 0, 255).astype(np.uint8)
|
97 |
|
98 |
result = Image.fromarray(output_image)
|
99 |
-
result = resize_to_canvas(result)
|
100 |
|
101 |
-
# Convert to JPEG
|
102 |
buffer = BytesIO()
|
103 |
result.save(buffer, format="JPEG", quality=95)
|
104 |
jpeg_image = Image.open(buffer)
|
105 |
|
106 |
-
logging.debug("
|
107 |
return jpeg_image, None
|
108 |
|
|
|
109 |
def create_interface():
|
110 |
-
with gr.Blocks() as interface:
|
111 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with gr.Row():
|
113 |
-
with gr.Column():
|
114 |
-
input_image = gr.Image(label="Imagen de entrada", type="pil", image_mode="RGB", height=
|
115 |
age_slider = gr.Slider(0, 100, value=30, step=1, label="Edad objetivo")
|
116 |
submit_button = gr.Button("Generar imagen envejecida")
|
117 |
-
|
118 |
-
|
|
|
119 |
error_message = gr.Textbox(label="Mensajes", interactive=False)
|
120 |
|
121 |
submit_button.click(
|
@@ -123,6 +133,7 @@ def create_interface():
|
|
123 |
inputs=[input_image, age_slider],
|
124 |
outputs=[output_image, error_message]
|
125 |
)
|
|
|
126 |
return interface
|
127 |
|
128 |
if __name__ == "__main__":
|
|
|
8 |
from io import BytesIO
|
9 |
import logging
|
10 |
|
|
|
|
|
11 |
# Configuración
|
12 |
+
logging.basicConfig(level=logging.DEBUG)
|
13 |
device = torch.device("cpu")
|
14 |
+
CANVAS_SIZE = (512, 512) # Tamaño original del lienzo
|
15 |
|
16 |
# Modelo de envejecimiento
|
17 |
class AgingModel(torch.nn.Module):
|
|
|
31 |
x = x * (1 + age_factor / 100.0)
|
32 |
return torch.clamp(x, 0, 1)
|
33 |
|
34 |
+
# Inicializar modelo y MTCNN
|
35 |
model = AgingModel().to(device)
|
36 |
model.eval()
|
37 |
+
mtcnn = MTCNN(image_size=128, margin=0, min_face_size=10, device=device) # Más sensible
|
38 |
|
39 |
def resize_to_canvas(image, canvas_size=CANVAS_SIZE):
|
40 |
+
"""Redimensionar imagen para ajustarse al lienzo manteniendo proporciones."""
|
41 |
img = image.convert("RGB")
|
42 |
+
img.thumbnail(canvas_size, Image.LANCZOS)
|
43 |
+
canvas = Image.new("RGB", canvas_size, (255, 255, 255)) # Fondo blanco
|
44 |
+
offset = ((canvas_size[0] - img.size[0]) // 2, (canvas_size[1] - img.size[1]) // 2)
|
45 |
+
canvas.paste(img, offset)
|
46 |
+
return canvas
|
47 |
|
48 |
def align_and_preprocess(image):
|
49 |
+
"""Alinear y preprocesar la imagen para el modelo."""
|
50 |
logging.debug("Starting face detection")
|
51 |
if isinstance(image, np.ndarray):
|
52 |
img = Image.fromarray(image).convert("RGB")
|
53 |
elif isinstance(image, Image.Image):
|
54 |
img = image.convert("RGB")
|
55 |
else:
|
56 |
+
return None, f"Tipo de imagen no válido: {type(image)}"
|
57 |
|
58 |
detected_face, _ = mtcnn.detect(img)
|
59 |
+
logging.debug(f"Caras detectadas: {detected_face}")
|
60 |
if detected_face is None:
|
61 |
+
return None, "No se detectó una cara. Por favor, sube una imagen con un rostro claro."
|
62 |
|
63 |
box = detected_face[0].astype(int)
|
64 |
face_img = img.crop((box[0], box[1], box[2], box[3]))
|
65 |
|
66 |
transform = transforms.Compose([
|
67 |
+
transforms.Resize((128, 128)),
|
68 |
transforms.ToTensor()
|
69 |
])
|
70 |
return transform(face_img).unsqueeze(0).to(device), None
|
71 |
|
72 |
def generate_aged_image(input_image, target_age):
|
73 |
+
"""Generar imagen envejecida."""
|
74 |
+
logging.debug("Iniciando generación de imagen")
|
75 |
if input_image is None:
|
76 |
+
return None, "Por favor, sube una imagen válida."
|
77 |
|
78 |
input_image = resize_to_canvas(input_image)
|
79 |
input_tensor, error = align_and_preprocess(input_image)
|
|
|
82 |
|
83 |
with torch.no_grad():
|
84 |
output = model(input_tensor, target_age)
|
85 |
+
logging.debug(f"Tensor de salida min: {output.min()}, max: {output.max()}")
|
86 |
|
87 |
output_image = output.squeeze().permute(1, 2, 0).cpu().numpy()
|
88 |
output_image = np.clip(output_image * 255, 0, 255).astype(np.uint8)
|
89 |
|
90 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
|
91 |
gray = cv2.cvtColor(output_image, cv2.COLOR_BGR2GRAY)
|
92 |
+
edges = cv2.Canny(gray, 50, 150) # Umbrales ajustados para mejor detección
|
93 |
edges = cv2.dilate(edges, None, iterations=1)
|
94 |
+
output_image[edges > 0] = output_image[edges > 0] * 0.6 # Arrugas más marcadas
|
95 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
96 |
|
97 |
output_image = output_image.astype(np.float32)
|
98 |
+
output_image = np.clip(output_image * (1 - target_age / 300.0), 0, 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
99 |
|
100 |
result = Image.fromarray(output_image)
|
101 |
+
result = resize_to_canvas(result) # Ajustar al lienzo final
|
102 |
|
|
|
103 |
buffer = BytesIO()
|
104 |
result.save(buffer, format="JPEG", quality=95)
|
105 |
jpeg_image = Image.open(buffer)
|
106 |
|
107 |
+
logging.debug("Generación de imagen completada")
|
108 |
return jpeg_image, None
|
109 |
|
110 |
+
# Interfaz de Gradio
|
111 |
def create_interface():
|
112 |
+
with gr.Blocks(css=".container {max-width: 1200px; margin: auto; padding: 20px; background-color: #f5f5f5;} .canvas {width: 512px !important; height: 512px !important; object-fit: contain;}") as interface:
|
113 |
+
gr.Markdown(
|
114 |
+
"""
|
115 |
+
# Sistema de Envejecimiento Facial para Personas Desaparecidas
|
116 |
+
Sube una imagen y selecciona la edad objetivo para generar una versión envejecida.
|
117 |
+
Este sistema está diseñado para apoyar a unidades policiales en la búsqueda de personas desaparecidas.
|
118 |
+
"""
|
119 |
+
)
|
120 |
+
|
121 |
with gr.Row():
|
122 |
+
with gr.Column(scale=1):
|
123 |
+
input_image = gr.Image(label="Imagen de entrada", type="pil", image_mode="RGB", height=512, width=512, elem_classes=["container", "canvas"])
|
124 |
age_slider = gr.Slider(0, 100, value=30, step=1, label="Edad objetivo")
|
125 |
submit_button = gr.Button("Generar imagen envejecida")
|
126 |
+
|
127 |
+
with gr.Column(scale=1):
|
128 |
+
output_image = gr.Image(label="Resultado envejecido", type="pil", image_mode="RGB", format="jpeg", height=512, width=512, elem_classes=["container", "canvas"])
|
129 |
error_message = gr.Textbox(label="Mensajes", interactive=False)
|
130 |
|
131 |
submit_button.click(
|
|
|
133 |
inputs=[input_image, age_slider],
|
134 |
outputs=[output_image, error_message]
|
135 |
)
|
136 |
+
|
137 |
return interface
|
138 |
|
139 |
if __name__ == "__main__":
|