from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info from prompt import smoke_detection_prompt import gradio as gr model_name = "leon-se/ForestFireVLM-3B" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained(model_name) def generate(image): messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": smoke_detection_prompt}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text demo = gr.Interface(fn=generate, inputs="image", outputs="label") demo.launch()