Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import open_clip
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from transformers import pipeline
|
7 |
+
import chromadb
|
8 |
+
import logging
|
9 |
+
import io
|
10 |
+
import requests
|
11 |
+
from concurrent.futures import ThreadPoolExecutor
|
12 |
+
|
13 |
+
# λ‘κΉ
μ€μ
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Initialize session state
|
18 |
+
if 'image' not in st.session_state:
|
19 |
+
st.session_state.image = None
|
20 |
+
if 'detected_items' not in st.session_state:
|
21 |
+
st.session_state.detected_items = None
|
22 |
+
if 'selected_item_index' not in st.session_state:
|
23 |
+
st.session_state.selected_item_index = None
|
24 |
+
if 'upload_state' not in st.session_state:
|
25 |
+
st.session_state.upload_state = 'initial'
|
26 |
+
if 'search_clicked' not in st.session_state:
|
27 |
+
st.session_state.search_clicked = False
|
28 |
+
|
29 |
+
# Load models
|
30 |
+
@st.cache_resource
|
31 |
+
def load_models():
|
32 |
+
try:
|
33 |
+
# CLIP λͺ¨λΈ
|
34 |
+
model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
35 |
+
|
36 |
+
# μΈκ·Έλ©ν
μ΄μ
λͺ¨λΈ
|
37 |
+
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
38 |
+
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
model.to(device)
|
41 |
+
|
42 |
+
return model, preprocess_val, segmenter, device
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"Error loading models: {e}")
|
45 |
+
raise
|
46 |
+
|
47 |
+
# λͺ¨λΈ λ‘λ
|
48 |
+
clip_model, preprocess_val, segmenter, device = load_models()
|
49 |
+
|
50 |
+
# ChromaDB μ€μ
|
51 |
+
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
|
52 |
+
collection = client.get_collection(name="clothes")
|
53 |
+
|
54 |
+
def extract_color_histogram(image, mask=None):
|
55 |
+
"""Extract color histogram from the image, considering the mask if provided"""
|
56 |
+
try:
|
57 |
+
img_array = np.array(image)
|
58 |
+
if mask is not None:
|
59 |
+
# Apply mask
|
60 |
+
mask = np.expand_dims(mask, axis=2)
|
61 |
+
img_array = img_array * mask
|
62 |
+
# Only consider pixels that are part of the clothing item
|
63 |
+
valid_pixels = img_array[mask[:,:,0] > 0]
|
64 |
+
else:
|
65 |
+
valid_pixels = img_array.reshape(-1, 3)
|
66 |
+
|
67 |
+
# Convert to HSV color space for better color representation
|
68 |
+
if len(valid_pixels) > 0:
|
69 |
+
img_hsv = Image.fromarray(valid_pixels.reshape(1, -1, 3).astype(np.uint8)).convert('HSV')
|
70 |
+
hsv_pixels = np.array(img_hsv)
|
71 |
+
|
72 |
+
# Calculate histogram for each HSV channel
|
73 |
+
h_hist = np.histogram(hsv_pixels[:,:,0], bins=10, range=(0, 256))[0]
|
74 |
+
s_hist = np.histogram(hsv_pixels[:,:,1], bins=10, range=(0, 256))[0]
|
75 |
+
v_hist = np.histogram(hsv_pixels[:,:,2], bins=10, range=(0, 256))[0]
|
76 |
+
|
77 |
+
# Normalize histograms
|
78 |
+
h_hist = h_hist / h_hist.sum() if h_hist.sum() > 0 else h_hist
|
79 |
+
s_hist = s_hist / s_hist.sum() if s_hist.sum() > 0 else s_hist
|
80 |
+
v_hist = v_hist / v_hist.sum() if v_hist.sum() > 0 else v_hist
|
81 |
+
|
82 |
+
return np.concatenate([h_hist, s_hist, v_hist])
|
83 |
+
return np.zeros(30) # Return zero histogram if no valid pixels
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Color histogram extraction error: {e}")
|
86 |
+
return np.zeros(30)
|
87 |
+
|
88 |
+
def process_segmentation(image):
|
89 |
+
"""Segmentation processing"""
|
90 |
+
try:
|
91 |
+
# pipeline μΆλ ₯ κ²°κ³Ό μ§μ μ²λ¦¬
|
92 |
+
output = segmenter(image)
|
93 |
+
|
94 |
+
if not output or len(output) == 0:
|
95 |
+
logger.warning("No segments found in image")
|
96 |
+
return []
|
97 |
+
|
98 |
+
processed_items = []
|
99 |
+
for segment in output:
|
100 |
+
# κΈ°λ³Έκ°μ ν¬ν¨νμ¬ λμ
λ리 μμ±
|
101 |
+
processed_segment = {
|
102 |
+
'label': segment.get('label', 'Unknown'),
|
103 |
+
'score': segment.get('score', 1.0), # scoreκ° μμΌλ©΄ 1.0μ κΈ°λ³Έκ°μΌλ‘ μ¬μ©
|
104 |
+
'mask': None
|
105 |
+
}
|
106 |
+
|
107 |
+
mask = segment.get('mask')
|
108 |
+
if mask is not None:
|
109 |
+
# λ§μ€ν¬κ° numpy arrayκ° μλ κ²½μ° λ³ν
|
110 |
+
if not isinstance(mask, np.ndarray):
|
111 |
+
mask = np.array(mask)
|
112 |
+
|
113 |
+
# λ§μ€ν¬κ° 2Dκ° μλ κ²½μ° μ²« λ²μ§Έ μ±λ μ¬μ©
|
114 |
+
if len(mask.shape) > 2:
|
115 |
+
mask = mask[:, :, 0]
|
116 |
+
|
117 |
+
# bool λ§μ€ν¬λ₯Ό floatλ‘ λ³ν
|
118 |
+
processed_segment['mask'] = mask.astype(float)
|
119 |
+
else:
|
120 |
+
logger.warning(f"No mask found for segment with label {processed_segment['label']}")
|
121 |
+
continue # λ§μ€ν¬κ° μλ μΈκ·Έλ¨ΌνΈλ 건λλ
|
122 |
+
|
123 |
+
processed_items.append(processed_segment)
|
124 |
+
|
125 |
+
logger.info(f"Successfully processed {len(processed_items)} segments")
|
126 |
+
return processed_items
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Segmentation error: {str(e)}")
|
130 |
+
import traceback
|
131 |
+
logger.error(traceback.format_exc())
|
132 |
+
return []
|
133 |
+
|
134 |
+
def extract_features(image, mask=None):
|
135 |
+
"""Extract both CLIP features and color features with segmentation mask"""
|
136 |
+
try:
|
137 |
+
# Extract CLIP features
|
138 |
+
if mask is not None:
|
139 |
+
img_array = np.array(image)
|
140 |
+
mask = np.expand_dims(mask, axis=2)
|
141 |
+
masked_img = img_array * mask
|
142 |
+
masked_img[mask[:,:,0] == 0] = 255 # Set background to white
|
143 |
+
image = Image.fromarray(masked_img.astype(np.uint8))
|
144 |
+
|
145 |
+
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
146 |
+
with torch.no_grad():
|
147 |
+
clip_features = clip_model.encode_image(image_tensor)
|
148 |
+
clip_features /= clip_features.norm(dim=-1, keepdim=True)
|
149 |
+
clip_features = clip_features.cpu().numpy().flatten()
|
150 |
+
|
151 |
+
# Extract color features
|
152 |
+
color_features = extract_color_histogram(image, mask)
|
153 |
+
|
154 |
+
# Combine features
|
155 |
+
# Note: We normalize and weight the features to balance their influence
|
156 |
+
clip_features_normalized = clip_features / np.linalg.norm(clip_features)
|
157 |
+
color_features_normalized = color_features / np.linalg.norm(color_features)
|
158 |
+
|
159 |
+
# Adjust these weights to control the influence of each feature type
|
160 |
+
clip_weight = 0.7 # CLIP features weight
|
161 |
+
color_weight = 0.3 # Color features weight
|
162 |
+
|
163 |
+
combined_features = np.concatenate([
|
164 |
+
clip_features_normalized * clip_weight,
|
165 |
+
color_features_normalized * color_weight
|
166 |
+
])
|
167 |
+
|
168 |
+
return combined_features
|
169 |
+
except Exception as e:
|
170 |
+
logger.error(f"Feature extraction error: {e}")
|
171 |
+
raise
|
172 |
+
|
173 |
+
def download_and_process_image(image_url, metadata_id):
|
174 |
+
"""Download image from URL and apply segmentation"""
|
175 |
+
try:
|
176 |
+
response = requests.get(image_url, timeout=10)
|
177 |
+
if response.status_code != 200:
|
178 |
+
logger.error(f"Failed to download image {metadata_id}: HTTP {response.status_code}")
|
179 |
+
return None
|
180 |
+
|
181 |
+
image = Image.open(io.BytesIO(response.content)).convert('RGB')
|
182 |
+
logger.info(f"Successfully downloaded image {metadata_id}")
|
183 |
+
|
184 |
+
processed_items = process_segmentation(image)
|
185 |
+
if processed_items and len(processed_items) > 0:
|
186 |
+
# κ°μ₯ ν° μΈκ·Έλ¨ΌνΈμ λ§μ€ν¬ μ¬μ©
|
187 |
+
largest_mask = max(processed_items, key=lambda x: np.sum(x['mask']))['mask']
|
188 |
+
features = extract_features(image, largest_mask)
|
189 |
+
logger.info(f"Successfully extracted features for image {metadata_id}")
|
190 |
+
return features
|
191 |
+
|
192 |
+
logger.warning(f"No valid mask found for image {metadata_id}")
|
193 |
+
return None
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
logger.error(f"Error processing image {metadata_id}: {str(e)}")
|
197 |
+
import traceback
|
198 |
+
logger.error(traceback.format_exc())
|
199 |
+
return None
|
200 |
+
|
201 |
+
def update_db_with_segmentation():
|
202 |
+
"""DBμ λͺ¨λ μ΄λ―Έμ§μ λν΄ segmentationμ μ μ©νκ³ featureλ₯Ό μ
λ°μ΄νΈ"""
|
203 |
+
try:
|
204 |
+
logger.info("Starting database update with segmentation and color features")
|
205 |
+
|
206 |
+
# μλ‘μ΄ collection μμ±
|
207 |
+
try:
|
208 |
+
client.delete_collection("clothes_segmented")
|
209 |
+
logger.info("Deleted existing segmented collection")
|
210 |
+
except:
|
211 |
+
logger.info("No existing segmented collection to delete")
|
212 |
+
|
213 |
+
new_collection = client.create_collection(
|
214 |
+
name="clothes_segmented",
|
215 |
+
metadata={"description": "Clothes collection with segmentation and color features"}
|
216 |
+
)
|
217 |
+
logger.info("Created new segmented collection")
|
218 |
+
|
219 |
+
# κΈ°μ‘΄ collectionμμ λ©νλ°μ΄ν°λ§ κ°μ Έμ€κΈ°
|
220 |
+
try:
|
221 |
+
all_items = collection.get(include=['metadatas'])
|
222 |
+
total_items = len(all_items['metadatas'])
|
223 |
+
logger.info(f"Found {total_items} items in database")
|
224 |
+
except Exception as e:
|
225 |
+
logger.error(f"Error getting items from collection: {str(e)}")
|
226 |
+
all_items = {'metadatas': []}
|
227 |
+
total_items = 0
|
228 |
+
|
229 |
+
# μ§ν μν© νμλ₯Ό μν progress bar
|
230 |
+
progress_bar = st.progress(0)
|
231 |
+
status_text = st.empty()
|
232 |
+
|
233 |
+
successful_updates = 0
|
234 |
+
failed_updates = 0
|
235 |
+
|
236 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
237 |
+
futures = []
|
238 |
+
# μ΄λ―Έμ§ URLμ΄ μλ νλͺ©λ§ μ²λ¦¬
|
239 |
+
valid_items = [m for m in all_items['metadatas'] if 'image_url' in m]
|
240 |
+
|
241 |
+
for metadata in valid_items:
|
242 |
+
future = executor.submit(
|
243 |
+
download_and_process_image,
|
244 |
+
metadata['image_url'],
|
245 |
+
metadata.get('id', 'unknown')
|
246 |
+
)
|
247 |
+
futures.append((metadata, future))
|
248 |
+
|
249 |
+
# κ²°κ³Ό μ²λ¦¬ λ° μ DBμ μ μ₯
|
250 |
+
for idx, (metadata, future) in enumerate(futures):
|
251 |
+
try:
|
252 |
+
new_features = future.result()
|
253 |
+
if new_features is not None:
|
254 |
+
item_id = metadata.get('id', str(hash(metadata['image_url'])))
|
255 |
+
try:
|
256 |
+
new_collection.add(
|
257 |
+
embeddings=[new_features.tolist()],
|
258 |
+
metadatas=[metadata],
|
259 |
+
ids=[item_id]
|
260 |
+
)
|
261 |
+
successful_updates += 1
|
262 |
+
logger.info(f"Successfully added item {item_id}")
|
263 |
+
except Exception as e:
|
264 |
+
logger.error(f"Error adding item to new collection: {str(e)}")
|
265 |
+
failed_updates += 1
|
266 |
+
else:
|
267 |
+
failed_updates += 1
|
268 |
+
|
269 |
+
# μ§ν μν© μ
λ°μ΄νΈ
|
270 |
+
progress = (idx + 1) / len(futures)
|
271 |
+
progress_bar.progress(progress)
|
272 |
+
status_text.text(f"Processing: {idx + 1}/{len(futures)} items. Success: {successful_updates}, Failed: {failed_updates}")
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logger.error(f"Error processing item: {str(e)}")
|
276 |
+
failed_updates += 1
|
277 |
+
continue
|
278 |
+
|
279 |
+
# μ΅μ’
κ²°κ³Ό νμ
|
280 |
+
status_text.text(f"Update completed. Successfully processed: {successful_updates}, Failed: {failed_updates}")
|
281 |
+
logger.info(f"Database update completed. Successful: {successful_updates}, Failed: {failed_updates}")
|
282 |
+
|
283 |
+
# μ±κ³΅μ μΌλ‘ μ²λ¦¬λ νλͺ©μ΄ μλμ§ νμΈ
|
284 |
+
if successful_updates > 0:
|
285 |
+
return True
|
286 |
+
else:
|
287 |
+
logger.error("No items were successfully processed")
|
288 |
+
return False
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
logger.error(f"Database update error: {str(e)}")
|
292 |
+
import traceback
|
293 |
+
logger.error(traceback.format_exc())
|
294 |
+
return False
|
295 |
+
|
296 |
+
def search_similar_items(features, top_k=10):
|
297 |
+
"""Search similar items using combined features"""
|
298 |
+
try:
|
299 |
+
# μΈκ·Έλ©ν
μ΄μ
μ΄ μ μ©λ collectionμ΄ μλμ§ νμΈ
|
300 |
+
try:
|
301 |
+
search_collection = client.get_collection("clothes_segmented")
|
302 |
+
logger.info("Using segmented collection for search")
|
303 |
+
except:
|
304 |
+
# μμΌλ©΄ κΈ°μ‘΄ collection μ¬μ©
|
305 |
+
search_collection = collection
|
306 |
+
logger.info("Using original collection for search")
|
307 |
+
|
308 |
+
results = search_collection.query(
|
309 |
+
query_embeddings=[features.tolist()],
|
310 |
+
n_results=top_k,
|
311 |
+
include=['metadatas', 'distances']
|
312 |
+
)
|
313 |
+
|
314 |
+
if not results or not results['metadatas'] or not results['distances']:
|
315 |
+
logger.warning("No results returned from ChromaDB")
|
316 |
+
return []
|
317 |
+
|
318 |
+
similar_items = []
|
319 |
+
for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
|
320 |
+
try:
|
321 |
+
similarity_score = 1 / (1 + float(distance))
|
322 |
+
item_data = metadata.copy()
|
323 |
+
item_data['similarity_score'] = similarity_score
|
324 |
+
similar_items.append(item_data)
|
325 |
+
except Exception as e:
|
326 |
+
logger.error(f"Error processing search result: {str(e)}")
|
327 |
+
continue
|
328 |
+
|
329 |
+
similar_items.sort(key=lambda x: x['similarity_score'], reverse=True)
|
330 |
+
return similar_items
|
331 |
+
except Exception as e:
|
332 |
+
logger.error(f"Search error: {str(e)}")
|
333 |
+
return []
|
334 |
+
|
335 |
+
def show_similar_items(similar_items):
|
336 |
+
"""Display similar items in a structured format with similarity scores"""
|
337 |
+
if not similar_items:
|
338 |
+
st.warning("No similar items found.")
|
339 |
+
return
|
340 |
+
|
341 |
+
st.subheader("Similar Items:")
|
342 |
+
|
343 |
+
# κ²°κ³Όλ₯Ό 2μ΄λ‘ νμ
|
344 |
+
items_per_row = 2
|
345 |
+
for i in range(0, len(similar_items), items_per_row):
|
346 |
+
cols = st.columns(items_per_row)
|
347 |
+
for j, col in enumerate(cols):
|
348 |
+
if i + j < len(similar_items):
|
349 |
+
item = similar_items[i + j]
|
350 |
+
with col:
|
351 |
+
try:
|
352 |
+
if 'image_url' in item:
|
353 |
+
st.image(item['image_url'], use_column_width=True)
|
354 |
+
|
355 |
+
# μ μ¬λ μ μλ₯Ό νΌμΌνΈλ‘ νμ
|
356 |
+
similarity_percent = item['similarity_score'] * 100
|
357 |
+
st.markdown(f"**Similarity: {similarity_percent:.1f}%**")
|
358 |
+
|
359 |
+
st.write(f"Brand: {item.get('brand', 'Unknown')}")
|
360 |
+
name = item.get('name', 'Unknown')
|
361 |
+
if len(name) > 50: # κΈ΄ μ΄λ¦μ μ€μ
|
362 |
+
name = name[:47] + "..."
|
363 |
+
st.write(f"Name: {name}")
|
364 |
+
|
365 |
+
# κ°κ²© μ 보 νμ
|
366 |
+
price = item.get('price', 0)
|
367 |
+
if isinstance(price, (int, float)):
|
368 |
+
st.write(f"Price: {price:,}μ")
|
369 |
+
else:
|
370 |
+
st.write(f"Price: {price}")
|
371 |
+
|
372 |
+
# ν μΈ μ λ³΄κ° μλ κ²½μ°
|
373 |
+
if 'discount' in item and item['discount']:
|
374 |
+
st.write(f"Discount: {item['discount']}%")
|
375 |
+
if 'original_price' in item:
|
376 |
+
st.write(f"Original: {item['original_price']:,}μ")
|
377 |
+
|
378 |
+
st.divider() # ꡬλΆμ μΆκ°
|
379 |
+
|
380 |
+
except Exception as e:
|
381 |
+
logger.error(f"Error displaying item: {e}")
|
382 |
+
st.error("Error displaying this item")
|
383 |
+
|
384 |
+
def process_search(image, mask, num_results):
|
385 |
+
"""μ μ¬ μμ΄ν
κ²μ μ²λ¦¬"""
|
386 |
+
try:
|
387 |
+
with st.spinner("Extracting features..."):
|
388 |
+
features = extract_features(image, mask)
|
389 |
+
|
390 |
+
with st.spinner("Finding similar items..."):
|
391 |
+
similar_items = search_similar_items(features, top_k=num_results)
|
392 |
+
|
393 |
+
return similar_items
|
394 |
+
except Exception as e:
|
395 |
+
logger.error(f"Search processing error: {e}")
|
396 |
+
return None
|
397 |
+
|
398 |
+
def handle_file_upload():
|
399 |
+
if st.session_state.uploaded_file is not None:
|
400 |
+
image = Image.open(st.session_state.uploaded_file).convert('RGB')
|
401 |
+
st.session_state.image = image
|
402 |
+
st.session_state.upload_state = 'image_uploaded'
|
403 |
+
st.rerun()
|
404 |
+
|
405 |
+
def handle_detection():
|
406 |
+
if st.session_state.image is not None:
|
407 |
+
detected_items = process_segmentation(st.session_state.image)
|
408 |
+
st.session_state.detected_items = detected_items
|
409 |
+
st.session_state.upload_state = 'items_detected'
|
410 |
+
st.rerun()
|
411 |
+
|
412 |
+
def handle_search():
|
413 |
+
st.session_state.search_clicked = True
|
414 |
+
|
415 |
+
def main():
|
416 |
+
st.title("Fashion Search App")
|
417 |
+
|
418 |
+
# Admin controls in sidebar
|
419 |
+
st.sidebar.title("Admin Controls")
|
420 |
+
if st.sidebar.checkbox("Show Admin Interface"):
|
421 |
+
# Admin interface ꡬν (νμν κ²½μ°)
|
422 |
+
st.sidebar.warning("Admin interface is not implemented yet.")
|
423 |
+
st.divider()
|
424 |
+
|
425 |
+
# νμΌ μ
λ‘λ
|
426 |
+
if st.session_state.upload_state == 'initial':
|
427 |
+
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'],
|
428 |
+
key='uploaded_file', on_change=handle_file_upload)
|
429 |
+
|
430 |
+
# μ΄λ―Έμ§κ° μ
λ‘λλ μν
|
431 |
+
if st.session_state.image is not None:
|
432 |
+
st.image(st.session_state.image, caption="Uploaded Image", use_column_width=True)
|
433 |
+
|
434 |
+
if st.session_state.detected_items is None:
|
435 |
+
if st.button("Detect Items", key='detect_button', on_click=handle_detection):
|
436 |
+
pass
|
437 |
+
|
438 |
+
# κ²μΆλ μμ΄ν
νμ
|
439 |
+
if st.session_state.detected_items is not None and len(st.session_state.detected_items) > 0:
|
440 |
+
# κ°μ§λ μμ΄ν
λ€μ 2μ΄λ‘ νμ
|
441 |
+
cols = st.columns(2)
|
442 |
+
for idx, item in enumerate(st.session_state.detected_items):
|
443 |
+
with cols[idx % 2]:
|
444 |
+
try:
|
445 |
+
if item.get('mask') is not None:
|
446 |
+
masked_img = np.array(st.session_state.image) * np.expand_dims(item['mask'], axis=2)
|
447 |
+
st.image(masked_img.astype(np.uint8), caption=f"Detected {item.get('label', 'Unknown')}")
|
448 |
+
|
449 |
+
st.write(f"Item {idx + 1}: {item.get('label', 'Unknown')}")
|
450 |
+
|
451 |
+
# score κ°μ΄ μκ³ μ«μμΈ κ²½μ°μλ§ νμ
|
452 |
+
score = item.get('score')
|
453 |
+
if score is not None and isinstance(score, (int, float)):
|
454 |
+
st.write(f"Confidence: {score*100:.1f}%")
|
455 |
+
else:
|
456 |
+
st.write("Confidence: N/A")
|
457 |
+
except Exception as e:
|
458 |
+
logger.error(f"Error displaying item {idx}: {str(e)}")
|
459 |
+
st.error(f"Error displaying item {idx}")
|
460 |
+
|
461 |
+
valid_items = [i for i in range(len(st.session_state.detected_items))
|
462 |
+
if st.session_state.detected_items[i].get('mask') is not None]
|
463 |
+
|
464 |
+
if not valid_items:
|
465 |
+
st.warning("No valid items detected for search.")
|
466 |
+
return
|
467 |
+
|
468 |
+
# μμ΄ν
μ ν
|
469 |
+
selected_idx = st.selectbox(
|
470 |
+
"Select item to search:",
|
471 |
+
valid_items,
|
472 |
+
format_func=lambda i: f"{st.session_state.detected_items[i].get('label', 'Unknown')}",
|
473 |
+
key='item_selector'
|
474 |
+
)
|
475 |
+
|
476 |
+
# κ²μ 컨νΈλ‘€
|
477 |
+
search_col1, search_col2 = st.columns([1, 2])
|
478 |
+
with search_col1:
|
479 |
+
search_clicked = st.button("Search Similar Items",
|
480 |
+
key='search_button',
|
481 |
+
type="primary")
|
482 |
+
with search_col2:
|
483 |
+
num_results = st.slider("Number of results:",
|
484 |
+
min_value=1,
|
485 |
+
max_value=20,
|
486 |
+
value=5,
|
487 |
+
key='num_results')
|
488 |
+
|
489 |
+
# κ²μ κ²°κ³Ό μ²λ¦¬
|
490 |
+
if search_clicked or st.session_state.get('search_clicked', False):
|
491 |
+
st.session_state.search_clicked = True
|
492 |
+
selected_item = st.session_state.detected_items[selected_idx]
|
493 |
+
|
494 |
+
if selected_item.get('mask') is None:
|
495 |
+
st.error("Selected item has no valid mask for search.")
|
496 |
+
return
|
497 |
+
|
498 |
+
# κ²μ κ²°κ³Όλ₯Ό μΈμ
μνμ μ μ₯
|
499 |
+
if 'search_results' not in st.session_state:
|
500 |
+
similar_items = process_search(st.session_state.image, selected_item['mask'], num_results)
|
501 |
+
st.session_state.search_results = similar_items
|
502 |
+
|
503 |
+
# μ μ₯λ κ²μ κ²°κ³Ό νμ
|
504 |
+
if st.session_state.search_results:
|
505 |
+
show_similar_items(st.session_state.search_results)
|
506 |
+
else:
|
507 |
+
st.warning("No similar items found.")
|
508 |
+
|
509 |
+
# μ κ²μ λ²νΌ
|
510 |
+
if st.button("Start New Search", key='new_search'):
|
511 |
+
# λͺ¨λ μν μ΄κΈ°ν
|
512 |
+
for key in list(st.session_state.keys()):
|
513 |
+
del st.session_state[key]
|
514 |
+
st.rerun()
|
515 |
+
|
516 |
+
if __name__ == "__main__":
|
517 |
+
main()
|