Spaces:
Runtime error
Runtime error
File size: 11,154 Bytes
2b49274 8edbd2d a45fa91 c088f6d 2347b7b a66c947 98273a5 2081073 66a541b f546acb f3c8e5b 66a541b 702b6d2 66a541b 702b6d2 66a541b fd68806 66a541b 4f8645a a6871e6 4f8645a fd68806 4f8645a bafa720 fd68806 4f8645a 770b6d4 4f8645a fd68806 4f8645a 44f38b5 4f8645a 2902e3a 702b6d2 2902e3a 44f38b5 2902e3a 44f38b5 2902e3a 4f8645a 66a541b c6bfa86 f3c8e5b 79b5423 c42414a 2902e3a 269f6e6 429e164 2902e3a 3f81af5 954ef1e 2902e3a 2adc49b 2902e3a a7fe167 2adc49b 2902e3a 139a326 2902e3a a6871e6 ce5ec0c 2902e3a 3e754a2 ce5ec0c 2adc49b 2902e3a 5445d63 2902e3a 5445d63 ac16ead 2adc49b 04094ba 2222282 2902e3a d6ea7aa 3f81af5 d6ea7aa 2902e3a dd0c6e0 2902e3a c088f6d feaa544 e34a1af 04c779d feaa544 2902e3a 8edbd2d 07de60f 8edbd2d 42f4878 fdc5945 8edbd2d 0434080 297634e 3923b36 eae7893 516f72b eae7893 feaa544 65d37a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import copy
import time
import requests
from time import strftime, localtime
sample_data = {
"gpus" : {
"Alice" : 16,
"Tom" : 16,
"γ
γ΄γ
γ
" : 16,
},
"total" : {
"total" : 28,
"used" : 12
},
"chain" : [
{
'index': 1,
'timestamp': 1701025843.5186985,
'transactions': [],
'previous_hash': '1'
},
{
'index': 2,
'timestamp': 1701037845.518921,
'transactions': [
{'id': 'Alice', 'kind': 'add', 'data': '16'},
{'id': 'bob', 'kind': 'add', 'data': '16'},
{'id': 'Alice', 'kind': 'inference', 'data': 'Hello?'},
{'id': 'Alice', 'kind': 'add', 'data': '16'},
{'id': 'bob', 'kind': 'inference', 'data': '16'}
],
'previous_hash':'5199cc3018287cf3f5fffbb0d1ae3f949256774a2347401818bdc93d29c379e8'
},
{
'index': 3,
'timestamp': 1701147846.535392,
'transactions': [
{'id': 'Alice', 'kind': 'add', 'data': '16'},
{'id': 'TOM', 'kind': 'add', 'data': '8'},
{'id': 'Alice', 'kind': 'inference', 'data': 'Hello?'},
{'id': 'Alice', 'kind': 'inference', 'data': '16'},
{'id': 'bob', 'kind': 'inference', 'data': '0'}
],
'previous_hash':'5199cc3018287cf3f5fffbb0d1ae3f949256774a2347401818bdc93d29c379e8'
},
{
'index': 4,
'timestamp': 1701157947.545325,
'transactions': [
{'id': 'Alice', 'kind': 'inference', 'data': '16'},
{'id': 'bob', 'kind': 'inference', 'data': '16'},
{'id': 'Alice', 'kind': 'inference', 'data': 'Hello?'},
{'id': 'Alice', 'kind': 'inference', 'data': '16'},
{'id': 'Nee', 'kind': 'add', 'data': '16'}
],
'previous_hash':'5199cc3018287cf3f5fffbb0d1ae3f949256774a2347401818bdc93d29c379e8'
},
{
'index': 5,
'timestamp': 1701057969.582371,
'transactions': [
{'id': 'Alice', 'kind': 'add', 'data': '16'},
{'id': 'bob', 'kind': 'inference', 'data': '16'},
{'id': 'Alice', 'kind': 'inference', 'data': 'Hello?'},
{'id': 'Alice', 'kind': 'inference', 'data': '16'},
{'id': 'bob', 'kind': 'inference', 'data': '16'}
],
'previous_hash':'5199cc3018287cf3f5fffbb0d1ae3f949256774a2347401818bdc93d29c379e8'
},
]
}
response = requests.post("https://ldhldh-api-for-unity.hf.space/run/predict_7", json={
"data": [
]}).json()
#sample_data = eval(response["data"][0])
print(sample_data)
user_num = len(sample_data['gpus'])
total_gpu = sample_data['total']['total']
used_gpu = min(sample_data['total']['used'],total_gpu*0.87)
timestamp_list = []
name_list = []
timestamp_gpu_data = []
timestamp_inference_data = [0, 0]
timestamp_list_date = []
for block in sample_data['chain']:
timestamp_list.append(block['timestamp'] )
for t in block['transactions']:
if t['kind'] == "add":
if not t['id'] in name_list:
name_list.append(t['id'])
timestamp_gpu_data = [[0 for _ in range(len(name_list))]]
timestamp_list_date = [1701115843.5186985, sample_data['chain'][0]['timestamp']]
for block in sample_data['chain']:
temp = timestamp_gpu_data[int(block['index']) - 1]
if strftime('%Y-%m-%d', localtime( timestamp_list_date[-1] )) != strftime('%Y-%m-%d', localtime( block['timestamp'] )):
timestamp_list_date.append(block['timestamp'])
timestamp_inference_data.append(0)
for t in block['transactions']:
if t['kind'] == "add":
temp[name_list.index(t['id'])] += int(t['data'])
elif t['kind'] == "out":
temp[name_list.index(t['id'])] = 0
else:
timestamp_inference_data[-1] += 1
timestamp_gpu_data.append(copy.deepcopy(temp))
timestamp_gpu_data = timestamp_gpu_data[0:-1]
col1, col2, col3 = st.columns(3)
col1.metric("Total GPU", f"{total_gpu} GB", f"{user_num} users are sharing now")
if total_gpu != 0:
col2.metric("Used", f"{used_gpu} GB")
col3.metric("Percent", f"{round(100 * used_gpu/total_gpu, 2)} %",)
else:
col2.metric("Used", f"0 GB")
col3.metric("Percent", f"- %",)
chart_data = pd.DataFrame(timestamp_gpu_data, columns = name_list, index = timestamp_list)
last_timestamp = strftime('%Y-%m-%d %I:%M:%S %p', localtime( sample_data['chain'][-1]['timestamp'] ))
st.title('Gpu pool timeline')
st.area_chart(chart_data)
st.caption(f'last updated in timestamp {last_timestamp}.')
class BubbleChart:
def __init__(self, data, bubble_spacing=0, n_bins=5):
unity_ids = list(data.keys())
share_values = list(data.values())
area = np.asarray(share_values)
r = np.sqrt(area / np.pi)
self.bubble_spacing = bubble_spacing
self.bubbles = np.ones((len(area), 4))
self.bubbles[:, 2] = r
self.bubbles[:, 3] = area
self.maxstep = 2 * self.bubbles[:, 2].max() + self.bubble_spacing
self.step_dist = self.maxstep / 2
length = np.ceil(np.sqrt(len(self.bubbles)))
grid = np.arange(length) * self.maxstep
gx, gy = np.meshgrid(grid, grid)
self.bubbles[:, 0] = gx.flatten()[:len(self.bubbles)]
self.bubbles[:, 1] = gy.flatten()[:len(self.bubbles)]
min_size = np.min(area)
max_size = np.max(area)
if min_size == max_size:
min_size = max_size//2
self.colors = self.quantize_colors(area, min_size, max_size, n_bins)
self.com = self.center_of_mass()
def quantize_colors(self, sizes, min_size, max_size, n_bins):
size_range = max_size - min_size
bin_size = size_range / n_bins
quantized_colors = []
for size in sizes:
bin_index = min(int((size - min_size) / bin_size), n_bins - 1)
quantized_colors.append(self.get_color_from_bin(bin_index, n_bins))
print(f"Size: {size}, Bin Index: {bin_index}, Color: {self.get_color_from_bin(bin_index, n_bins)}")
return quantized_colors
def get_color_from_bin(self, bin_index, n_bins):
# colors = ['#9a9fad', '#848dad', '#7080b5', '#5269b3', '#3654b5']
colors = ['#42c5ac', '#61d87d', '#a8eb86', '#d3f59a', '#f8ffaf']
return colors[bin_index]
def center_of_mass(self):
return np.average(
self.bubbles[:, :2], axis=0, weights=self.bubbles[:, 3]
)
def center_distance(self, bubble, bubbles):
return np.hypot(bubble[0] - bubbles[:, 0],
bubble[1] - bubbles[:, 1])
def outline_distance(self, bubble, bubbles):
center_distance = self.center_distance(bubble, bubbles)
return center_distance - bubble[2] - \
bubbles[:, 2] - self.bubble_spacing
def check_collisions(self, bubble, bubbles):
distance = self.outline_distance(bubble, bubbles)
return len(distance[distance < 0])
def collides_with(self, bubble, bubbles):
distance = self.outline_distance(bubble, bubbles)
idx_min = np.argmin(distance)
return idx_min if type(idx_min) == np.ndarray else [idx_min]
def collapse(self, n_iterations=50):
for _i in range(n_iterations):
moves = 0
for i in range(len(self.bubbles)):
rest_bub = np.delete(self.bubbles, i, 0)
dir_vec = self.com - self.bubbles[i, :2]
dir_vec = dir_vec / np.sqrt(dir_vec.dot(dir_vec))
new_point = self.bubbles[i, :2] + dir_vec * self.step_dist
new_bubble = np.append(new_point, self.bubbles[i, 2:4])
if not self.check_collisions(new_bubble, rest_bub):
self.bubbles[i, :] = new_bubble
self.com = self.center_of_mass()
moves += 1
else:
for colliding in self.collides_with(new_bubble, rest_bub):
dir_vec = rest_bub[colliding, :2] - self.bubbles[i, :2]
dir_vec = dir_vec / np.sqrt(dir_vec.dot(dir_vec))
orth = np.array([dir_vec[1], -dir_vec[0]])
new_point1 = (self.bubbles[i, :2] + orth *
self.step_dist)
new_point2 = (self.bubbles[i, :2] - orth *
self.step_dist)
dist1 = self.center_distance(
self.com, np.array([new_point1]))
dist2 = self.center_distance(
self.com, np.array([new_point2]))
new_point = new_point1 if dist1 < dist2 else new_point2
new_bubble = np.append(new_point, self.bubbles[i, 2:4])
if not self.check_collisions(new_bubble, rest_bub):
self.bubbles[i, :] = new_bubble
self.com = self.center_of_mass()
if moves / len(self.bubbles) < 0.1:
self.step_dist = self.step_dist / 2
def plot(self, ax, labels, alpha, edge_alpha = 1):
for i in range(len(self.bubbles)):
circ = plt.Circle(
self.bubbles[i, :2], self.bubbles[i, 2],
color=self.colors[i], alpha= alpha)
ax.add_patch(circ)
ax.text(*self.bubbles[i, :2], labels[i],
horizontalalignment='center', verticalalignment='center')
class GenerateChart:
def __init__(self, data, bubble_spacing=0, n_bins=5):
unity_ids = list(data.keys())
share_values = list(data.values())
simulation = BubbleChart(data, bubble_spacing=bubble_spacing, n_bins=n_bins)
simulation.collapse()
fig, ax = plt.subplots(subplot_kw=dict(aspect="equal"))
alpha_value = 1
simulation.plot(ax, unity_ids, alpha=alpha_value)
ax.axis("off")
ax.relim()
ax.autoscale_view()
ax.set_title('p2p share', color = "white")
fig = plt.gcf()
img = fig2img(fig)
st.title('Current GPU contributors')
st.image(img, caption='Bubble chart of gpu pool of each Users')
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
import io
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
if len(sample_data['gpus'])> 1:
chart_generator = GenerateChart(sample_data.get("gpus", {}), bubble_spacing=0.1, n_bins=5)
#st.title('Inference call')
#timestamp_list_date_str = []
#for d in timestamp_list_date:
# timestamp_list_date_str.append(strftime('%Y-%m-%d', localtime( d )))
#call_data = pd.DataFrame(timestamp_inference_data, columns = ["inference call"], index = timestamp_list_date_str)
#st.bar_chart(call_data)
st.title('Previous Blocks')
st.json(sample_data['chain'])
|