import os import gradio as gr from huggingface_hub import InferenceClient from noaa_incidents import NOAAIncidentDB, NOAAIncidentScraper import json from datetime import datetime # Initialize Hugging Face client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") class NOAAIncidentApp: def __init__(self): """Initialize the NOAA Incident App with database and chatbot components.""" self.db = NOAAIncidentDB(persist_directory="noaa_db") self.last_update = None self._load_last_update_time() def _load_last_update_time(self): """Load the last update time from metadata file.""" try: if os.path.exists("metadata.json"): with open("metadata.json", "r") as f: metadata = json.load(f) self.last_update = metadata.get("last_update") except Exception as e: print(f"Error loading metadata: {e}") def _save_last_update_time(self): """Save the last update time to metadata file.""" try: with open("metadata.json", "w") as f: json.dump({"last_update": self.last_update}, f) except Exception as e: print(f"Error saving metadata: {e}") def search_incidents(self, query, min_date=None, max_date=None, location_filter=None, num_results=5): """Search incidents with optional filters and return results.""" results = self.db.search(query, n_results=num_results) filtered_results = [] for result in results: if min_date and result['date'] < min_date: continue if max_date and result['date'] > max_date: continue if location_filter and location_filter.lower() not in result['location'].lower(): continue filtered_results.append(result) if not filtered_results: return "No matching incidents found." output = [] for i, result in enumerate(filtered_results, 1): output.append(f"## Result {i}: {result['title']}") output.append(f"**Date:** {result['date']}") output.append(f"**Location:** {result['location']}") output.append(f"**Details:** {result['details']}") output.append("---\n") return "\n".join(output) def respond(self, message, history, system_message, max_tokens, temperature, top_p): """Generate chatbot responses or query the NOAA database based on user input.""" # Check if the message is a NOAA query if "search noaa" in message.lower(): # Extract filters (basic implementation, can be expanded) query = message.replace("search noaa", "").strip() response = self.search_incidents(query=query, num_results=5) return response # Generate chatbot response messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def refresh_database(self, progress=gr.Progress()): """Refresh the database with new incidents.""" try: progress(0, desc="Initializing scraper...") scraper = NOAAIncidentScraper(max_workers=5) progress(0.2, desc="Scraping new incidents...") csv_file, _ = scraper.run(validate_first=True) if not csv_file: return "Error: Failed to scrape new incidents." progress(0.6, desc="Loading new data into database...") num_loaded = self.db.load_incidents(csv_file) self.last_update = datetime.now().strftime("%Y-%m-%d %H:%M:%S") self._save_last_update_time() progress(1.0, desc="Complete!") return f"Successfully refreshed database with {num_loaded} incidents." except Exception as e: return f"Error refreshing database: {str(e)}" def create_interface(self): """Create the Gradio interface.""" with gr.Blocks(title="NOAA Incident & Chatbot App") as interface: gr.Markdown("# NOAA Incident & Chatbot Application") with gr.Row(): with gr.Column(scale=2): gr.Markdown("### Chatbot Interaction") system_message = gr.Textbox( label="System Message", value="You are a friendly assistant." ) chat_history = gr.State([]) message = gr.Textbox(label="Message") max_tokens = gr.Slider(1, 2048, 512, step=1, label="Max Tokens") temperature = gr.Slider(0.1, 4.0, 0.7, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, 0.95, step=0.05, label="Top-p") chat_btn = gr.Button("Send") chat_md = gr.Markdown() with gr.Column(scale=1): refresh_btn = gr.Button("Refresh Database") last_update_md = gr.Markdown( f"*Last database update: {self.last_update or 'Never'}*" ) chat_btn.click( self.respond, inputs=[ message, chat_history, system_message, max_tokens, temperature, top_p, ], outputs=chat_md, ) refresh_btn.click(self.refresh_database, inputs=[], outputs=last_update_md) return interface # Run the app app = NOAAIncidentApp() demo = app.create_interface() if __name__ == "__main__": demo.launch()