Spaces:
Running
on
Zero
Running
on
Zero
add steps & iterations params (#2)
Browse files- add steps & iterations params (198def9bbd7c4789dc1fe7525574bb386668499c)
- Update clip_slider_pipeline.py (1efd0cb7516df60b50fe99af918beec5b3fd29f5)
- app.py +12 -10
- clip_slider_pipeline.py +14 -6
app.py
CHANGED
@@ -7,24 +7,24 @@ from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, Autoen
|
|
7 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
8 |
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
9 |
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config)
|
10 |
-
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda")
|
11 |
|
12 |
@spaces.GPU
|
13 |
-
def generate(slider_x, slider_y, prompt,
|
14 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
15 |
avg_diff_x_1, avg_diff_x_2,
|
16 |
avg_diff_y_1, avg_diff_y_2):
|
17 |
|
18 |
# check if avg diff for directions need to be re-calculated
|
19 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
20 |
-
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1])
|
21 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
22 |
|
23 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
24 |
-
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1])
|
25 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
26 |
|
27 |
-
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=
|
28 |
comma_concepts_x = ', '.join(slider_x)
|
29 |
comma_concepts_y = ', '.join(slider_y)
|
30 |
|
@@ -36,17 +36,17 @@ def generate(slider_x, slider_y, prompt,
|
|
36 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
37 |
|
38 |
@spaces.GPU
|
39 |
-
def update_x(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
40 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
41 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
42 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=
|
43 |
return image
|
44 |
|
45 |
@spaces.GPU
|
46 |
-
def update_y(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
47 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
48 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
49 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=
|
50 |
return image
|
51 |
|
52 |
css = '''
|
@@ -96,10 +96,12 @@ with gr.Blocks(css=css) as demo:
|
|
96 |
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
97 |
output_image = gr.Image(elem_id="image_out")
|
98 |
with gr.Accordion(label="advanced options"):
|
|
|
|
|
99 |
|
100 |
|
101 |
submit.click(fn=generate,
|
102 |
-
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
103 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
104 |
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
105 |
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
|
|
7 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
8 |
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
9 |
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config)
|
10 |
+
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"))
|
11 |
|
12 |
@spaces.GPU
|
13 |
+
def generate(slider_x, slider_y, prompt, iterations, steps,
|
14 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
15 |
avg_diff_x_1, avg_diff_x_2,
|
16 |
avg_diff_y_1, avg_diff_y_2):
|
17 |
|
18 |
# check if avg diff for directions need to be re-calculated
|
19 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
20 |
+
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], iterations=iterations)
|
21 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
22 |
|
23 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
24 |
+
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], iterations=iterations)
|
25 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
26 |
|
27 |
+
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
28 |
comma_concepts_x = ', '.join(slider_x)
|
29 |
comma_concepts_y = ', '.join(slider_y)
|
30 |
|
|
|
36 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
37 |
|
38 |
@spaces.GPU
|
39 |
+
def update_x(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
40 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
41 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
42 |
+
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
43 |
return image
|
44 |
|
45 |
@spaces.GPU
|
46 |
+
def update_y(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
47 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
48 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
49 |
+
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
50 |
return image
|
51 |
|
52 |
css = '''
|
|
|
96 |
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
97 |
output_image = gr.Image(elem_id="image_out")
|
98 |
with gr.Accordion(label="advanced options"):
|
99 |
+
iterations = gr.Slider(label = "num iterations", minimum=0, value=100, maximum=300)
|
100 |
+
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
101 |
|
102 |
|
103 |
submit.click(fn=generate,
|
104 |
+
inputs=[slider_x, slider_y, prompt, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
105 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
106 |
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
107 |
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
clip_slider_pipeline.py
CHANGED
@@ -32,17 +32,21 @@ class CLIPSlider:
|
|
32 |
|
33 |
def find_latent_direction(self,
|
34 |
target_word:str,
|
35 |
-
opposite:str
|
|
|
36 |
|
37 |
# lets identify a latent direction by taking differences between opposites
|
38 |
# target_word = "happy"
|
39 |
# opposite = "sad"
|
40 |
|
41 |
-
|
|
|
|
|
|
|
42 |
with torch.no_grad():
|
43 |
positives = []
|
44 |
negatives = []
|
45 |
-
for i in tqdm(range(
|
46 |
medium = random.choice(MEDIUMS)
|
47 |
subject = random.choice(SUBJECTS)
|
48 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
@@ -145,19 +149,23 @@ class CLIPSliderXL(CLIPSlider):
|
|
145 |
|
146 |
def find_latent_direction(self,
|
147 |
target_word:str,
|
148 |
-
opposite:str
|
|
|
149 |
|
150 |
# lets identify a latent direction by taking differences between opposites
|
151 |
# target_word = "happy"
|
152 |
# opposite = "sad"
|
153 |
-
|
|
|
|
|
|
|
154 |
|
155 |
with torch.no_grad():
|
156 |
positives = []
|
157 |
negatives = []
|
158 |
positives2 = []
|
159 |
negatives2 = []
|
160 |
-
for i in tqdm(range(
|
161 |
medium = random.choice(MEDIUMS)
|
162 |
subject = random.choice(SUBJECTS)
|
163 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
|
32 |
|
33 |
def find_latent_direction(self,
|
34 |
target_word:str,
|
35 |
+
opposite:str,
|
36 |
+
num_iterations: int = None):
|
37 |
|
38 |
# lets identify a latent direction by taking differences between opposites
|
39 |
# target_word = "happy"
|
40 |
# opposite = "sad"
|
41 |
|
42 |
+
if num_iterations is not None:
|
43 |
+
iterations = num_iterations
|
44 |
+
else:
|
45 |
+
iterations = self.iterations
|
46 |
with torch.no_grad():
|
47 |
positives = []
|
48 |
negatives = []
|
49 |
+
for i in tqdm(range(iterations)):
|
50 |
medium = random.choice(MEDIUMS)
|
51 |
subject = random.choice(SUBJECTS)
|
52 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
|
149 |
|
150 |
def find_latent_direction(self,
|
151 |
target_word:str,
|
152 |
+
opposite:str,
|
153 |
+
num_iterations: int = None):
|
154 |
|
155 |
# lets identify a latent direction by taking differences between opposites
|
156 |
# target_word = "happy"
|
157 |
# opposite = "sad"
|
158 |
+
if num_iterations is not None:
|
159 |
+
iterations = num_iterations
|
160 |
+
else:
|
161 |
+
iterations = self.iterations
|
162 |
|
163 |
with torch.no_grad():
|
164 |
positives = []
|
165 |
negatives = []
|
166 |
positives2 = []
|
167 |
negatives2 = []
|
168 |
+
for i in tqdm(range(iterations)):
|
169 |
medium = random.choice(MEDIUMS)
|
170 |
subject = random.choice(SUBJECTS)
|
171 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|