import os, json, logging import requests from transformers import pipeline from flask import Flask, request app=Flask(__name__) @app.route("/") def hello(): return "welcome!" def parse_params(): input=request.args.get('input') kargs=request.args.get('kargs') try: input = json.load(input) except: pass try: kargs = json.load(kargs) except: kargs={} return input, kargs from huggingface_hub import HfApi api=HfApi() @app.route("/search") def search(): args=request.args.to_dict() models = api.list_models(**args) return models @app.route("/task_list") def tasks(): return [item.strip() for item in '''audio-classification automatic-speech-recognition conversational depth-estimation document-question-answering feature-extraction fill-mask image-classification image-feature-extraction image-segmentation image-to-image image-to-text mask-generation object-detection question-answering summarization table-question-answering text2text-generation text-classification (alias sentiment-analysis available) text-generation text-to-audio (alias text-to-speech available) token-classification (alias ner available) translation translation_xx_to_yy video-classification visual-question-answering zero-shot-classification zero-shot-image-classification zero-shot-audio-classification zero-shot-object-detection'''.split("\n") ] @app.route("/") def run_task(task): (input, kargs)=parse_params() pipe=pipeline(task, **kargs) return pipe(input) @app.route("//") def run_model(): (input, kargs)=parse_params() pipe=pipeline(model=f'{user}/{model}', **kargs) return pipe(input) @app.route("///") def run_task_model(): (input, kargs)=parse_params() pipe=pipeline(task, model=f'{user}/{model}', **kargs) return pipe(input) logging.info("xtts is ready")