import os import time import torch import numpy as np import gradio as gr from segment_anything import build_sam, SamAutomaticMaskGenerator from segment_anything.utils.amg import ( batch_iterator, MaskData, calculate_stability_score, batched_mask_to_box, is_box_near_crop_edge, ) os.system(r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth') hourglass_args = { "baseline": {}, "1.2x faster": { "use_hourglass": True, "hourglass_clustering_location": 14, "hourglass_num_cluster": 100, }, "1.5x faster": { "use_hourglass": True, "hourglass_clustering_location": 6, "hourglass_num_cluster": 81, }, } def generate_mask(image, generator: SamAutomaticMaskGenerator): generator.predictor.set_image(image) image_size = image.shape[:2] points_scale = np.array(image_size)[None, ::-1] points_for_image = generator.point_grids[0] * points_scale for (points,) in batch_iterator(generator.points_per_batch, points_for_image): transformed_points = generator.predictor.transform.apply_coords(points, image_size) in_points = torch.as_tensor(transformed_points, device=generator.predictor.device) in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) masks, iou_preds, _ = generator.predictor.predict_torch( in_points[:, None, :], in_labels[:, None], multimask_output=True, return_logits=True, ) # Serialize predictions and store in MaskData data = MaskData( masks=masks.flatten(0, 1), iou_preds=iou_preds.flatten(0, 1), points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), ) del masks # Filter by predicted IoU if generator.pred_iou_thresh > 0.0: keep_mask = data["iou_preds"] > generator.pred_iou_thresh data.filter(keep_mask) # Calculate stability score data["stability_score"] = calculate_stability_score( data["masks"], generator.predictor.model.mask_threshold, generator.stability_score_offset ) if generator.stability_score_thresh > 0.0: keep_mask = data["stability_score"] >= generator.stability_score_thresh data.filter(keep_mask) # Threshold masks and calculate boxes data["masks"] = data["masks"] > generator.predictor.model.mask_threshold # Write mask records curr_anns = [] for idx in range(len(data["masks"])): ann = { "segmentation": data["masks"][idx].numpy(), "area": data["masks"][idx].sum().item(), } curr_anns.append(ann) return curr_anns def predict(image, speed_mode, points_per_side): points_per_side = int(points_per_side) mask_generator = SamAutomaticMaskGenerator( build_sam(checkpoint="sam_vit_h_4b8939.pth", **hourglass_args[speed_mode]), points_per_side=points_per_side, points_per_batch=64 if points_per_side > 12 else points_per_side * points_per_side ) start = time.perf_counter() with torch.no_grad(): # masks = mask_generator.generate(image) masks = generate_mask(image, mask_generator) eta = time.perf_counter() - start eta_text = f"Time of generation: {eta:.2f} seconds" if len(masks) == 0: return image sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True) img = np.ones(image.shape) for mask in sorted_masks: m = mask['segmentation'] color_mask = np.random.random((1, 1, 3)) img = img * (1 - m[..., None]) + color_mask * m[..., None] image = ((image + img * 255) / 2).astype(np.uint8) return image, eta_text description = """ #
Expedit-SAM (Expedite Segment Anything Model without any training)
Github link: [Link](https://github.com/Expedit-LargeScale-Vision-Transformer/Expedit-SAM) You can select the speed mode you want to use from the "Speed Mode" dropdown menu and click "Run" to segment the image you uploaded to the "Input Image" box. """ if (SPACE_ID := os.getenv('SPACE_ID')) is not None: description += f'\n

For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. Duplicate Space

' def main(): with gr.Blocks() as demo: gr.Markdown(description) with gr.Column(): with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image") points_per_side = gr.Dropdown( choices=[4, 6, 8, 12, 16, 32], value=12, label="Points per Side", ) speed_mode = gr.Dropdown( choices=list(hourglass_args.keys()), value="baseline", label="Speed Mode", multiselect=False, ) with gr.Row(): run_btn = gr.Button(label="Run", id="run", value="Run") clear_btn = gr.Button(label="Clear", id="clear", value="Clear") with gr.Column(): output_image = gr.Image(label="Output Image") eta_label = gr.Label(label="ETA") gr.Examples( examples=[ ["./notebooks/images/dog.jpg"], ["notebooks/images/groceries.jpg"], ["notebooks/images/truck.jpg"], ], inputs=[input_image], outputs=[output_image], fn=predict, ) run_btn.click( fn=predict, inputs=[input_image, speed_mode, points_per_side], outputs=[output_image, eta_label] ) clear_btn.click( fn=lambda: [None, None], inputs=None, outputs=[input_image, output_image], queue=False, ) demo.queue() demo.launch() if __name__ == "__main__": main()