File size: 13,964 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import List, Optional, Union

import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel

from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
    BaseOutput,
    is_accelerate_available,
    logging,
    randn_tensor,
    replace_example_docstring,
)
from .renderer import ShapERenderer


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from PIL import Image
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from diffusers.utils import export_to_gif, load_image

        >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        >>> repo = "openai/shap-e-img2img"
        >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
        >>> pipe = pipe.to(device)

        >>> guidance_scale = 3.0
        >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"
        >>> image = load_image(image_url).convert("RGB")

        >>> images = pipe(
        ...     image,
        ...     guidance_scale=guidance_scale,
        ...     num_inference_steps=64,
        ...     frame_size=256,
        ... ).images

        >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")
        ```
"""


@dataclass
class ShapEPipelineOutput(BaseOutput):
    """
    Output class for ShapEPipeline.

    Args:
        images (`torch.FloatTensor`)
            a list of images for 3D rendering
    """

    images: Union[PIL.Image.Image, np.ndarray]


class ShapEImg2ImgPipeline(DiffusionPipeline):
    """
    Pipeline for generating latent representation of a 3D asset and rendering with NeRF method with Shap-E

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        prior ([`PriorTransformer`]):
            The canonincal unCLIP prior to approximate the image embedding from the text embedding.
        text_encoder ([`CLIPTextModelWithProjection`]):
            Frozen text-encoder.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        scheduler ([`HeunDiscreteScheduler`]):
            A scheduler to be used in combination with `prior` to generate image embedding.
        renderer ([`ShapERenderer`]):
            Shap-E renderer projects the generated latents into parameters of a MLP that's used to create 3D objects
            with the NeRF rendering method
    """

    def __init__(
        self,
        prior: PriorTransformer,
        image_encoder: CLIPVisionModel,
        image_processor: CLIPImageProcessor,
        scheduler: HeunDiscreteScheduler,
        renderer: ShapERenderer,
    ):
        super().__init__()

        self.register_modules(
            prior=prior,
            image_encoder=image_encoder,
            image_processor=image_processor,
            scheduler=scheduler,
            renderer=renderer,
        )

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
        models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
        when their specific submodule has its `forward` method called.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        models = [self.image_encoder, self.prior]
        for cpu_offloaded_model in models:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.image_encoder, "_hf_hook"):
            return self.device
        for module in self.image_encoder.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def _encode_image(
        self,
        image,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
    ):
        if isinstance(image, List) and isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)

        if not isinstance(image, torch.Tensor):
            image = self.image_processor(image, return_tensors="pt").pixel_values[0].unsqueeze(0)

        image = image.to(dtype=self.image_encoder.dtype, device=device)

        image_embeds = self.image_encoder(image)["last_hidden_state"]
        image_embeds = image_embeds[:, 1:, :].contiguous()  # batch_size, dim, 256

        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            negative_image_embeds = torch.zeros_like(image_embeds)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_embeds = torch.cat([negative_image_embeds, image_embeds])

        return image_embeds

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        image: Union[PIL.Image.Image, List[PIL.Image.Image]],
        num_images_per_prompt: int = 1,
        num_inference_steps: int = 25,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        guidance_scale: float = 4.0,
        frame_size: int = 64,
        output_type: Optional[str] = "pil",  # pil, np, latent
        return_dict: bool = True,
    ):
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            frame_size (`int`, *optional*, default to 64):
                the width and height of each image frame of the generated 3d output
            output_type (`str`, *optional*, defaults to `"pt"`):
                The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
                (`torch.Tensor`).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Examples:

        Returns:
            [`ShapEPipelineOutput`] or `tuple`
        """

        if isinstance(image, PIL.Image.Image):
            batch_size = 1
        elif isinstance(image, torch.Tensor):
            batch_size = image.shape[0]
        elif isinstance(image, list) and isinstance(image[0], (torch.Tensor, PIL.Image.Image)):
            batch_size = len(image)
        else:
            raise ValueError(
                f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(image)}"
            )

        device = self._execution_device

        batch_size = batch_size * num_images_per_prompt

        do_classifier_free_guidance = guidance_scale > 1.0
        image_embeds = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance)

        # prior

        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        num_embeddings = self.prior.config.num_embeddings
        embedding_dim = self.prior.config.embedding_dim

        latents = self.prepare_latents(
            (batch_size, num_embeddings * embedding_dim),
            image_embeds.dtype,
            device,
            generator,
            latents,
            self.scheduler,
        )

        # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
        latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim)

        for i, t in enumerate(self.progress_bar(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            noise_pred = self.prior(
                scaled_model_input,
                timestep=t,
                proj_embedding=image_embeds,
            ).predicted_image_embedding

            # remove the variance
            noise_pred, _ = noise_pred.split(
                scaled_model_input.shape[2], dim=2
            )  # batch_size, num_embeddings, embedding_dim

            if do_classifier_free_guidance is not None:
                noise_pred_uncond, noise_pred = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)

            latents = self.scheduler.step(
                noise_pred,
                timestep=t,
                sample=latents,
            ).prev_sample

        if output_type == "latent":
            return ShapEPipelineOutput(images=latents)

        images = []
        for i, latent in enumerate(latents):
            print()
            image = self.renderer.decode(
                latent[None, :],
                device,
                size=frame_size,
                ray_batch_size=4096,
                n_coarse_samples=64,
                n_fine_samples=128,
            )

            images.append(image)

        images = torch.stack(images)

        if output_type not in ["np", "pil"]:
            raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}")

        images = images.cpu().numpy()

        if output_type == "pil":
            images = [self.numpy_to_pil(image) for image in images]

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (images,)

        return ShapEPipelineOutput(images=images)