Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,478 Bytes
5f093a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
# William Peebles and Saining Xie
#
# Copyright (c) 2021 OpenAI
# MIT License
#
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, Transformer2DModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class DiTPipeline(DiffusionPipeline):
r"""
This pipeline inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
transformer ([`Transformer2DModel`]):
Class conditioned Transformer in Diffusion model to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with `dit` to denoise the encoded image latents.
"""
def __init__(
self,
transformer: Transformer2DModel,
vae: AutoencoderKL,
scheduler: KarrasDiffusionSchedulers,
id2label: Optional[Dict[int, str]] = None,
):
super().__init__()
self.register_modules(transformer=transformer, vae=vae, scheduler=scheduler)
# create a imagenet -> id dictionary for easier use
self.labels = {}
if id2label is not None:
for key, value in id2label.items():
for label in value.split(","):
self.labels[label.lstrip().rstrip()] = int(key)
self.labels = dict(sorted(self.labels.items()))
def get_label_ids(self, label: Union[str, List[str]]) -> List[int]:
r"""
Map label strings, *e.g.* from ImageNet, to corresponding class ids.
Parameters:
label (`str` or `dict` of `str`): label strings to be mapped to class ids.
Returns:
`list` of `int`: Class ids to be processed by pipeline.
"""
if not isinstance(label, list):
label = list(label)
for l in label:
if l not in self.labels:
raise ValueError(
f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}."
)
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__(
self,
class_labels: List[int],
guidance_scale: float = 4.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Function invoked when calling the pipeline for generation.
Args:
class_labels (List[int]):
List of imagenet class labels for the images to be generated.
guidance_scale (`float`, *optional*, defaults to 4.0):
Scale of the guidance signal.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
num_inference_steps (`int`, *optional*, defaults to 250):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
"""
batch_size = len(class_labels)
latent_size = self.transformer.config.sample_size
latent_channels = self.transformer.config.in_channels
latents = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size),
generator=generator,
device=self.device,
dtype=self.transformer.dtype,
)
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1 else latents
class_labels = torch.tensor(class_labels, device=self.device).reshape(-1)
class_null = torch.tensor([1000] * batch_size, device=self.device)
class_labels_input = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
half = latent_model_input[: len(latent_model_input) // 2]
latent_model_input = torch.cat([half, half], dim=0)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
timesteps = t
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = latent_model_input.device.type == "mps"
if isinstance(timesteps, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=latent_model_input.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
latent_model_input, timestep=timesteps, class_labels=class_labels_input
).sample
# perform guidance
if guidance_scale > 1:
eps, rest = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
noise_pred = torch.cat([eps, rest], dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
model_output, _ = torch.split(noise_pred, latent_channels, dim=1)
else:
model_output = noise_pred
# compute previous image: x_t -> x_t-1
latent_model_input = self.scheduler.step(model_output, t, latent_model_input).prev_sample
if guidance_scale > 1:
latents, _ = latent_model_input.chunk(2, dim=0)
else:
latents = latent_model_input
latents = 1 / self.vae.config.scaling_factor * latents
samples = self.vae.decode(latents).sample
samples = (samples / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
samples = samples.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
samples = self.numpy_to_pil(samples)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=samples)
|